valuation domains
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Malik Tusif Ahmed ◽  
Chahrazade Bakkari ◽  
Najib Mahdou ◽  
Abdelkbir Riffi
Keyword(s):  

2021 ◽  
Vol 258 (2) ◽  
pp. 199-221
Author(s):  
P. A. Krylov ◽  
A. A. Tuganbaev
Keyword(s):  

Author(s):  
Hagen Knaf

A theorem of Lichtenbaum states, that every proper, regular curve [Formula: see text] over a discrete valuation domain [Formula: see text] is projective. This theorem is generalized to the case of an arbitrary valuation domain [Formula: see text] using the following notion of regularity for non-noetherian rings introduced by Bertin: the local ring [Formula: see text] of a point [Formula: see text] is called regular, if every finitely generated ideal [Formula: see text] has finite projective dimension. The generalization is a particular case of a projectivity criterion for proper, normal [Formula: see text]-curves: such a curve [Formula: see text] is projective if for every irreducible component [Formula: see text] of its closed fiber [Formula: see text] there exists a closed point [Formula: see text] of the generic fiber of [Formula: see text] such that the Zariski closure [Formula: see text] meets [Formula: see text] and meets [Formula: see text] in regular points only.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dongmei Li ◽  
Licui Zheng

The GVW algorithm is an effective algorithm to compute Gröbner bases for polynomial ideals over a field. Combined with properties of valuation domains and the idea of the GVW algorithm, we propose a new algorithm to compute Gröbner bases for polynomial ideals over valuation domains in this study. Furthermore, we use an example to demonstrate the improvement of our algorithm.


Author(s):  
A. Azarang

Let [Formula: see text] be a commutative ring, we say that [Formula: see text] has prime avoidance property, if [Formula: see text] for an ideal [Formula: see text] of [Formula: see text], then there exists [Formula: see text] such that [Formula: see text]. We exactly determine when [Formula: see text] has prime avoidance property. In particular, if [Formula: see text] has prime avoidance property, then [Formula: see text] is compact. For certain classical rings we show the converse holds (such as Bezout rings, [Formula: see text]-domains, zero-dimensional rings and [Formula: see text]). We give an example of a compact set [Formula: see text], where [Formula: see text] is a Prufer domain, which has not prime avoidance property. Finally, we show that if [Formula: see text] are valuation domains for a field [Formula: see text] and [Formula: see text] for some [Formula: see text], then there exists [Formula: see text] such that [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document