topological markov shift
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2018 ◽  
Vol 123 (1) ◽  
pp. 91-100
Author(s):  
Kengo Matsumoto

Let $A$ be an $N\times N$ irreducible matrix with entries in $\{0,1\}$. We present an easy way to find an $(N+3)\times (N+3)$ irreducible matrix $\bar {A}$ with entries in $\{0,1\}$ such that the associated Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_{\bar {A}}$ are isomorphic and $\det (1 -A) = - \det (1-\bar {A})$. As a consequence, we find that two Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_B$ are isomorphic if and only if the one-sided topological Markov shift $(X_A, \sigma _A)$ is continuously orbit equivalent to either $(X_B, \sigma _B)$ or $(X_{\bar {B}}, \sigma _{\bar {B}})$.



2017 ◽  
Vol 165 (2) ◽  
pp. 341-357 ◽  
Author(s):  
STÉPHANE SEURET

AbstractLet $\mathscr{S}$ be an irreducible topological Markov shift, and let μ be a shift-invariant Gibbs measure on $\mathscr{S}$. Let (Xn)n ≥ 1 be a sequence of i.i.d. random variables with common law μ. In this paper, we focus on the size of the covering of $\mathscr{S}$ by the balls B(Xn, n−s). This generalises the original Dvoretzky problem by considering random coverings of fractal sets by non-homogeneously distributed balls. We compute the almost sure dimension of lim supn →+∞B(Xn, n−s) for every s ≥ 0, which depends on s and the multifractal features of μ. Our results include the inhomogeneous covering of $\mathbb{T}^d$ and Sierpinski carpets.





Sign in / Sign up

Export Citation Format

Share Document