Inhomogeneous random coverings of topological Markov shifts

2017 ◽  
Vol 165 (2) ◽  
pp. 341-357 ◽  
Author(s):  
STÉPHANE SEURET

AbstractLet $\mathscr{S}$ be an irreducible topological Markov shift, and let μ be a shift-invariant Gibbs measure on $\mathscr{S}$. Let (Xn)n ≥ 1 be a sequence of i.i.d. random variables with common law μ. In this paper, we focus on the size of the covering of $\mathscr{S}$ by the balls B(Xn, n−s). This generalises the original Dvoretzky problem by considering random coverings of fractal sets by non-homogeneously distributed balls. We compute the almost sure dimension of lim supn →+∞B(Xn, n−s) for every s ≥ 0, which depends on s and the multifractal features of μ. Our results include the inhomogeneous covering of $\mathbb{T}^d$ and Sierpinski carpets.

2018 ◽  
Vol 123 (1) ◽  
pp. 91-100
Author(s):  
Kengo Matsumoto

Let $A$ be an $N\times N$ irreducible matrix with entries in $\{0,1\}$. We present an easy way to find an $(N+3)\times (N+3)$ irreducible matrix $\bar {A}$ with entries in $\{0,1\}$ such that the associated Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_{\bar {A}}$ are isomorphic and $\det (1 -A) = - \det (1-\bar {A})$. As a consequence, we find that two Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_B$ are isomorphic if and only if the one-sided topological Markov shift $(X_A, \sigma _A)$ is continuously orbit equivalent to either $(X_B, \sigma _B)$ or $(X_{\bar {B}}, \sigma _{\bar {B}})$.


1997 ◽  
Vol 08 (03) ◽  
pp. 357-374 ◽  
Author(s):  
Kengo Matsumoto

We construct and study C*-algebras associated with subshifts in symbolic dynamics as a generalization of Cuntz–Krieger algebras for topological Markov shifts. We prove some universal properties for the C*-algebras and give a criterion for them to be simple and purely infinite. We also present an example of a C*-algebra coming from a subshift which is not conjugate to a Markov shift.


2013 ◽  
Vol 34 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
RODRIGO BISSACOT ◽  
RICARDO DOS SANTOS FREIRE

AbstractWe prove that if ${\Sigma }_{\mathbf{A} } ( \mathbb{N} )$ is an irreducible Markov shift space over $ \mathbb{N} $ and $f: {\Sigma }_{\mathbf{A} } ( \mathbb{N} )\rightarrow \mathbb{R} $ is coercive with bounded variation then there exists a maximizing probability measure for $f$, whose support lies on a Markov subshift over a finite alphabet. Furthermore, the support of any maximizing measure is contained in this same compact subshift. To the best of our knowledge, this is the first proof beyond the finitely primitive case in the general irreducible non-compact setting. It is also noteworthy that our technique works for the full shift over positive real sequences.


2019 ◽  
Vol 3 (2) ◽  
pp. 31 ◽  
Author(s):  
Alireza Khalili Golmankhaneh ◽  
Arran Fernandez

In this paper, we introduce the concept of fractal random variables and their related distribution functions and statistical properties. Fractal calculus is a generalisation of standard calculus which includes function with fractal support. Here we combine this emerging field of study with probability theory, defining concepts such as Shannon entropy on fractal thin Cantor-like sets. Stable distributions on fractal sets are suggested and related physical models are presented. Our work is illustrated with graphs for clarity of the results.


Author(s):  
Nikolai Leonenko ◽  
Claudio Macci ◽  
Barbara Pacchiarotti

We consider a class of tempered subordinators, namely a class of subordinators with one-dimensional marginal tempered distributions which belong to a family studied in [3]. The main contribution in this paper is a non-central moderate deviations result. More precisely we mean a class of large deviation principles that fill the gap between the (trivial) weak convergence of some non-Gaussian identically distributed random variables to their common law, and the convergence of some other related random variables to a constant. Some other minor results concern large deviations for the inverse of the tempered subordinators considered in this paper; actually, in some results, these inverse processes appear as random time-changes of other independent processes.


2012 ◽  
Vol 33 (2) ◽  
pp. 441-454 ◽  
Author(s):  
DORIS FIEBIG

AbstractWe give a complete characterization of the compact metric dynamical systems that appear as boundaries of the canonical compactification of a locally compact countable state mixing Markov shift. Consider such a compact metric dynamical system. Then there is a pair of non-conjugate Markov shifts with conjugate canonical compactifications, one of which has the given compact system as canonical boundary.


1986 ◽  
Vol 6 (4) ◽  
pp. 571-582 ◽  
Author(s):  
D. A. Lind

AbstractFor every Perron number λ we construct an infinite collection of topological Markov shifts with entropy log λ whose spectra are disjoint except for the necessary conjugates of λ. This is used to show that Marcus' theorem about every Markov shift of entropy log n factoring onto the full n-shift does not extend to certain entropy values.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Sign in / Sign up

Export Citation Format

Share Document