constant morphism
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Ariyan Javanpeykar ◽  
Alberto Vezzani

Abstract Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field K of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is K-analytically Brody hyperbolic in equal characteristic 0. These two results are predicted by the Green–Griffiths–Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use Scholze’s uniformization theorem to prove that the aforementioned moduli space satisfies a non-archimedean analogue of the “Theorem of the Fixed Part” in mixed characteristic.



2011 ◽  
Vol 21 (5) ◽  
pp. 1035-1066 ◽  
Author(s):  
Z. ÉSIK ◽  
T. HAJGATÓ

Partial iterative theories are algebraic theories such that for certain morphisms f the equation ξ = f ⋅ 〈ξ, 1p〉 has a unique solution. Iteration theories are algebraic theories satisfying a certain set of identities. We investigate some similarities between partial iterative theories and iteration theories.In our main result, we give a sufficient condition ensuring that the partially defined dagger operation of a partial iterative theory can be extended to a totally defined operation so that the resulting theory becomes an iteration theory. We show that this general extension theorem can be instantiated to prove that every Elgot iterative theory with at least one constant morphism 1 → 0 can be extended to an iteration theory. We also apply our main result to theories equipped with an additive structure.



Sign in / Sign up

Export Citation Format

Share Document