scholarly journals Non-archimedean hyperbolicity and applications

Author(s):  
Ariyan Javanpeykar ◽  
Alberto Vezzani

Abstract Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field K of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is K-analytically Brody hyperbolic in equal characteristic 0. These two results are predicted by the Green–Griffiths–Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use Scholze’s uniformization theorem to prove that the aforementioned moduli space satisfies a non-archimedean analogue of the “Theorem of the Fixed Part” in mixed characteristic.

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2018 ◽  
Vol 167 (01) ◽  
pp. 61-64 ◽  
Author(s):  
INDER KAUR

AbstractLet K be a field of characteristic 0. Fix integers r, d coprime with r ⩾ 2. Let XK be a smooth, projective, geometrically connected curve of genus g ⩾ 2 defined over K. Assume there exists a line bundle ${\cal L}_K$ on XK of degree d. In this paper we prove the existence of a stable locally free sheaf on XK with rank r and determinant ${\cal L}_K$. This trivially proves the C1 conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.


2018 ◽  
Vol 155 (1) ◽  
pp. 38-88 ◽  
Author(s):  
Alberto Vezzani

We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field $K$ of mixed characteristic and over the associated (tilted) perfectoid field $K^{\flat }$ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of $K$ and $K^{\flat }$ are isomorphic.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9011-9074 ◽  
Author(s):  
Omegar Calvo-Andrade ◽  
Maurício Corrêa ◽  
Marcos Jardim

Abstract We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation and certain logarithmic foliations have stable tangent sheaves.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2010 ◽  
Vol 10 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Indranil Biswas ◽  
João Pedro P. Dos Santos

AbstractLet X be a smooth projective variety defined over an algebraically closed field k. Nori constructed a category of vector bundles on X, called essentially finite vector bundles, which is reminiscent of the category of representations of the fundamental group (in characteristic zero). In fact, this category is equivalent to the category of representations of a pro-finite group scheme which controls all finite torsors. We show that essentially finite vector bundles coincide with those which become trivial after being pulled back by some proper and surjective morphism to X.


2020 ◽  
Vol 20 (3) ◽  
pp. 401-412
Author(s):  
Alex Küronya ◽  
Yusuf Mustopa

AbstractWe ask when the CM (Castelnuovo–Mumford) regularity of a vector bundle on a projective variety X is numerical, and address the case when X is an abelian variety. We show that the continuous CM-regularity of a semihomogeneous vector bundle on an abelian variety X is a piecewise-constant function of Chern data, and we also use generic vanishing theory to obtain a sharp upper bound for the continuous CM-regularity of any vector bundle on X. From these results we conclude that the continuous CM-regularity of many semihomogeneous bundles — including many Verlinde bundles when X is a Jacobian — is both numerical and extremal.


1979 ◽  
Vol 75 ◽  
pp. 95-119 ◽  
Author(s):  
Hiroshi Saito

The group of cycles of codimension one algebraically equivalent to zero of a nonsingular projective variety modulo rational equivalence forms an abelian variety, i.e., the Picard variety. To the group of cycles of dimension zero and of degree zero, there corresponds an abelian variety, the Albanese variety. Similarly, Weil, Lieberman and Griffiths have attached complex tori to the cycles of intermediate dimension in the classical case. The aim of this article is to give a purely algebraic construction of such “intermediate Jacobian varieties.”


2018 ◽  
Vol 19 (3) ◽  
pp. 891-918 ◽  
Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.


Author(s):  
Naoki Koseki

Abstract Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$ and $Y$ are connected by a sequence of flip-like diagrams. The result is a higher dimensional generalization of the result of Nakajima and Yoshioka, which is the case of $\dim Y=2$. As an application of our general result, we study the birational geometry of the Hilbert scheme of two points.


Sign in / Sign up

Export Citation Format

Share Document