instantaneous degree of nonlinearity
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Tang ◽  
Hui Qin

Real-time substructure testing (RST) algorithm is a newly developed integration method for real-time hybrid simulation (RTHS) which has structure-dependent and explicit formulations for both displacement and velocity. The most favourable characteristics of the RST algorithm is unconditionally stable for linear and no iterations are needed. In order to fully evaluate the performance of the RST method in solving dynamic problems for nonlinear systems, stability, numerical dispersion, energy dissipation, and overshooting properties are discussed. Stability analysis shows that the RST method is only conditionally stable when applied to nonlinear systems. The upper stability limit increases for stiffness-softening systems with an increasing value of the instantaneous degree of nonlinearity while decreases for stiffness-hardening systems when the instantaneous degree of nonlinearity becomes larger. Meanwhile, the initial damping ratio of the system has a negative impact on the upper stability limit especially for instantaneous stiffness softening systems, and a larger value of the damping ratio will significantly decrease the upper stability limit of the RST method. It is shown in the accuracy analysis that the RST method has relatively smaller period errors and numerical damping ratios for nonlinear systems when compared with other two well-developed algorithms. Three simplified engineering cases are presented to investigate the dynamic performance of the RST method, and the numerical results indicate that this method has a more desirable accuracy than other methods in solving dynamic problems for both linear and nonliner systems.


2009 ◽  
Vol 25 (3) ◽  
pp. 289-297 ◽  
Author(s):  
S.-Y. Chang

AbstractIn the step-by-step solution of a linear elastic system, an appropriate time step can be selected based on analytical evaluation resultsHowever, there is no way to select an appropriate time step for accurate integration of a nonlinear system. In this study, numerical properties of the Newmark explicit method are analytically evaluated after introducing the instantaneous degree of nonlinearity. It is found that the upper stability limit is equal to 2 only for a linear elastic system. In general, it reduces for instantaneous stiffness hardening and it is enlarged for instantaneous stiffness softening. Furthermore, the absolute relative period error increases with the increase of instantaneous degree of nonlinearity for a given product of the natural frequency and the time step. The rough guidelines for accurate integration of a nonlinear system are also proposed in this paper based on the analytical evaluation results. Analytical evaluation results and the feasibility of the rough guidelines proposed for accurate integration of a nonlinear system are confirmed with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document