dispersion energy
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 67)

H-INDEX

38
(FIVE YEARS 4)

Author(s):  
Brian Nguyen ◽  
Devin J. Hernandez ◽  
Emmanuel Victor V. Flores ◽  
Filipp Furche

Abstract A multivariate adiabatic connection (MAC) framework for describing dispersion interactions in a system consisting of non-overlapping monomers is presented. By constraining the density to the physical ground-state density of the supersystem, the MAC enables a rigorous separation of induction and dispersion effects. The exact dispersion energy is obtained from the zero-temperature fluctuation-dissipation theorem and partitioned into increments corresponding to the interaction energy gained when an additional monomer is added to a -monomer system. The total dispersion energy of an -monomer system is independent of any partitioning into subsystems. This statement of dispersion size consistency is shown to be an exact constraint. The resulting additive separability of the dispersion energy results from multiplicative separability of the generalized screening factor defined as the inverse generalized dielectric function. Many-body perturbation theory (MBPT) is found to violate dispersion size-consistency because perturbative approximations to the generalized screening factor are nonseparable; on the other hand, random phase approximation-type methods produce separable generalized screening factors and therefore preserve dispersion size-consistency. This result further explains the previously observed increase in relative errors of MBPT for dispersion interactions as the system size increases. Implications for electronic structure theory and applications to supramolecular materials and condensed matter are discussed.


Author(s):  
Rahhal El Ajlaoui ◽  
Yassine Hakmaoui ◽  
El Mostapha Rakib ◽  
El Mostafa Ketatni ◽  
Mohamed Saadi ◽  
...  

The title compound, C17H17BrN2O5, resulted from the 1,3-dipolar cycloaddition reaction between dimethyl acetylenedicarboxylate and (3-bromobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide in CHCl3. The dihedral angle between the pyrazole rings (all atoms) is 32.91 (10)°; the oxo-pyrazole ring displays an envelope conformation whereas the other pyrazole ring adopts a twisted conformation. The bromophenyl ring subtends a dihedral angle of 88.95 (9)° with the mean plane of its attached pyrazole ring. In the crystal, the molecules are linked by C—H...O hydrogen bonds and aromatic π–π interactions with an inter-centroid distance of 3.8369 (10) Å. The Hirshfeld surface analysis and fingerprint plots reveal that the molecular packing is governed by H...H (37.1%), O...H/H...O (31.3%), Br...H/H...Br (13.5%) and C...H/H...C (10.6%) contacts. The energy framework indicates that dispersion energy is the major contributor to the molecular packing.


2022 ◽  
Vol 19 (1 Jan-Jun) ◽  
Author(s):  
Syella Ayunisa Rani ◽  
Heru Kuswanto ◽  
Himawan Putranta ◽  
Aditya Yoga Purnama ◽  
Wipsar Sunu Brams Dwandaru

This study aims to find equations and simulations that satisfy the characteristics of graphene’s energy dispersion and identify misconceptions that may occur. Here we give students nine articles about graphene’s dispersion energy. They were asked to identify the equations, parameters, and software used in each of the articles. The assignment was then to make the distribution of the data in a spreadsheet. The parameters used were the lattice constant of 2.46 Å, the range of the k wave function for the x and y axes of -2πa to 2πa, and the interval for each range of 0.1. Each equation is divided into two parts, E(+) and E(-). The analysis was carried out by making a slice in the middle of the x and y axes, as well as the main and off-diagonals. Graphene has Dirac points where the band gap is zero. This means that there is no distance or very small distance between the valence and conduction bands. From this activity, it can be concluded that Rozhkov (2016) has the equations and simulations that best satisfy graphene’s dispersion energy. Misconceptions occur in almost all existing equations and simulations.


2021 ◽  
pp. 1-13
Author(s):  
Mohammed S. Alqahtani ◽  
Khalid I. Hussein ◽  
Hesham Afif ◽  
Manuela Reben ◽  
Iwona Grelowska ◽  
...  

Shielding glass materials doped with heavy metal oxides show an improvement in the effectiveness of the materials used in radiation shielding. In this work, the photon shielding parameters of six tellurite glass systems doped with several metal oxides namely, 70TeO2-10P2O5- 10ZnO- 5.0PbF2- 0.0024Er2O3- 5.0X (where X represents different doped metail oxides namely, Nb2O5, TiO2, WO3, PbO, Bi2O3, and CdO) in a broad energy spectrum, ranging from 0.015 MeV to 15 MeV, were evaluated. The shielding parameters were calculated using the online software Phy-X/PSD. The highest linear and mass attenuation coefficients recorded were obtaibed from the samples containing bismuth oxide (Bi2O3), and the lowest half-value layer and mean free path were recorded among the other samples. Furthermore, the shielding effectiveness of tellurite glass systems was compared with commercial shielding materials (RS-369, RS-253 G18, chromite, ferrite, magnetite, and barite). The optical parameters viz, dispersion energy, single-oscillator energy, molar refraction, electronic polarizability, non-linear refractive indices, n2 , and third-order susceptibility were measured and reported at a different wavelength. Bi2O3 has a strong effect on enhancing the optical and shielding properties. The outcome of this study suggests the potential of using the proposed glass samples as radiation-shielding materials for a broad range of imaging and therapeutic applications.


2021 ◽  
Vol 18 (6) ◽  
pp. 908-919
Author(s):  
Qin Su ◽  
Xingrong Xu ◽  
Zhinong Wang ◽  
Chengyu Sun ◽  
Yaozong Guo ◽  
...  

Abstract The surface-wave analysis method is widely adopted to build a near-surface shear-wave velocity structure. Reliable dispersion imaging results form the basis for subsequent picking and inversion of dispersion curves. In this paper, we present a high-resolution dispersion imaging method (CSFK) of seismic surface waves based on chirplet transform (CT). CT introduces the concept of chirp rate, which could focus surface-wave dispersion energy well in time-frequency domain. First, each seismic trace in time-distance domain is transformed to time-frequency domain by CT. Thus, for each common frequency gather, we obtain a series of 2D complex-valued functions of time and distance, which are called pseudo-seismograms. Then, we scan a series of group velocities to obtain the slanting-phase function and perform a spatial Fourier transform on the slanting-phase function to get its amplitude. In addition, power operation is adopted to increase the amplitude difference between dispersion energy and noise. Finally, we generate the dispersion image by searching for the maximum amplitude of a slanting-phase function. Because the CSFK method considers the position of surface-wave energy in the time-frequency domain, this largely eliminates the noise interference from other time locations and improves the resolution and signal-to-noise ratio of the dispersion image. The results of synthetic test and field dataset processing demonstrate the effectiveness of the proposed method. In addition, we invert all 120 sets of dispersion curves extracted from reflected wave seismic data acquired for petroleum prospecting. The one-dimensional inversion shear-wave velocity models are interpolated into a two-dimensional profile of shear-wave velocity, which is in good agreement with the borehole data.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Emilio Márquez ◽  
Juan J. Ruíz-Pérez ◽  
Manuel Ballester ◽  
Almudena P. Márquez ◽  
Eduardo Blanco ◽  
...  

Several, nearly-1-µm-thick, pure, unhydrogenated amorphous-silicon (a-Si) thin layers were grown at high rates by non-equilibrium rf-magnetron Ar-plasma sputtering (RFMS) onto room-temperature low-cost glass substrates. A new approach is employed for the optical characterization of the thin-layer samples, which is based on some new formulae for the normal-incidence transmission of such a samples and on the adoption of the inverse-synthesis method, by using a devised Matlab GUI environment. The so-far existing limiting value of the thickness-non-uniformity parameter, Δd, when optically characterizing wedge-shaped layers, has been suppressed with the introduction of the appropriate corrections in the expression of transmittance. The optical responses of the H-free RFMS-a-Si thin films investigated, were successfully parameterized using a single, Kramers–Krönig (KK)-consistent, Tauc–Lorentz oscillator model, with the inclusion in the model of the Urbach tail (TLUC), in the present case of non-hydrogenated a-Si films. We have also employed the Wemple–DiDomenico (WDD) single-oscillator model to calculate the two WDD dispersion parameters, dispersion energy, Ed, and oscillator energy, Eso. The amorphous-to-crystalline mass-density ratio in the expression for Ed suggested by Wemple and DiDomenico is the key factor in understanding the refractive index behavior of the a-Si layers under study. The value of the porosity for the specific rf-magnetron sputtering deposition conditions employed in this work, with an Ar-pressure of ~4.4 Pa, is found to be approximately 21%. Additionally, it must be concluded that the adopted TLUC parameterization is highly accurate for the evaluation of the UV/visible/NIR transmittance measurements, on the H-free a-Si investigated. Finally, the performed experiments are needed to have more confidence of quick and accurate optical-characterizations techniques, in order to find new applications of a-Si layers in optics and optoelectronics.


2021 ◽  
Author(s):  
Junyong Wu ◽  
Hua Yan ◽  
Hao Chen ◽  
Yanxian Jin ◽  
Aiguo Zhong ◽  
...  

Abstract Except σ-type and π-type halogen bond, a new type of the parallel halogen bond interactions between pyrazine (C4H4N2) and XF (X=F,Cl,Br and I) have been discovered at the MP2/aug-cc-pVTZ level. Through comparing the calculated interaction energy,we can know that the π-type halogen bonding interactions are weaker than the corresponding σ-type halogen bonding interactions, and parallel halogen-bond interactions are weaker than the corresponding π-type halogen bonding interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the σ-type halogen bonding interactions while the parallel halogen-bond interactions are mainly dispersion energy. For the π-type halogen bonding interactions in C4H4N2-XF(X=F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF(X=Br and I) complexes the electrostatic term, induction and dispersion play equally important role in the total attractive interaction.NBO analysis, AIM theory and Conceptual DFT are also be utilized.


Author(s):  
Rodolfo Moreno-Fuquen ◽  
Kevin Arango-Daraviña ◽  
Alan R. Kennedy

The synthesis, crystal structure and spectroscopic and electronic properties of N-(2-methyl-5-nitrophenyl)-4-(pyridin-2-yl)pyrimidin-2-amine (NPPA), C16H13N5O2, a potential template for drug design against chronic myelogenous leukemia (CML), is reported. The design and construction of the target molecule were carried out starting from the guanidinium nitrate salt (previously synthesized) and the corresponding enaminone. X-ray diffraction analysis and a study of the Hirshfeld surfaces revealed important interactions between the nitro-group O atoms and the H atoms of the pyridine and pyrimidine rings. A crystalline ordering in layers, by the stacking of rings through interactions of the π–π type, was observed and confirmed by a study of the shape-index surfaces and dispersion energy calculations. Quantitative electrostatic potential studies revealed the most positive value of the molecule on regions close to the N—H groups (34.8 kcal mol−1); nevertheless, steric impediments and the planarity of the molecule do not allow the formation of hydrogen bonds from this group. This interaction is however activated when the molecule takes on a new extended conformation in the active pocket of the enzyme kinase (PDB ID 2hyy), interacting with protein residues that are fundamental in the inhibition process of CML. The most negative values of the molecule are seen in regions close to the nitro group (−35.4 and −34.0 kcal mol−1). A molecular docking study revealed an energy affinity of ΔG = −10.3 kcal mol−1 for NPPA which, despite not having a more negative value than the control molecule (Imatinib; ΔG = −12.8 kcal mol−1), shows great potential to be used as a template for new drugs against CML.


2021 ◽  
pp. 089270572110386
Author(s):  
Ali F Al-Shawabkeh ◽  
Ziad M Elimat ◽  
Khaleel N Abushgair

The goal of this study was to investigate the optical properties of the prepared polyvinyl chloride (PVC)/zinc oxide (ZnO) nanocomposite films. The PVC/ZnO nanocomposite films consist of the addition of different concentrations with both non-annealed ZnO nanoparticles and ZnO nanoparticles annealed at temperature of 700°C. The PVC/ZnO nanocomposite films by weight concentrations of (0 wt.%, 2.5 wt.%, 5 wt.% and 10 wt.%) have been prepared by the casting method. The optical absorbance and transmittance values of the composites films were measured in the wavelength range between (250 to 1100 nm) at room temperature by using the UV-1800 Shimadzu spectrophotometer. The optical properties (absorption coefficient, dielectric constant, refractive index, and optical conductivity) have been investigated by the ultraviolet (UV) spectrophotometer. The optical parameters (direct optical energy gap, excitation energy for electronic transitions, the dispersion energy, static refractive index, static dielectric constant, optical oscillator strengths, the moments of optical spectrum, linear optical susceptibility, third-order nonlinear optical susceptibility, nonlinear refractive index, high-frequency dielectric constant, the carrier concentration to the effective mass ratio, the long wavelength refractive index and the plasma frequency) were calculated. The results showed that the optical properties behavior of the PVC/ZnO nanocomposite films was found to be dependent on the ZnO concentration, and photon wavelength. In addition, the results of the study show that the optical parameters can be influenced by alter the concentration of the nonannealed and annealed a ZnO nanoparticle in the PVC polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document