whitehead link
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2019 ◽  
Vol 23 (5) ◽  
pp. 2593-2664 ◽  
Author(s):  
Miguel Acosta


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 773 ◽  
Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo Amaral ◽  
Klee Irwin

A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S 3 . Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M 3 . More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group P S L ( 2 , Z ) correspond to d-fold M 3 - coverings over the trefoil knot. In this paper, we also investigate quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M 3 ’s obtained from Dehn fillings are explored.



Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo Amaral ◽  
Klee Irwin

A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S3. Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M3. More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group PSL(2, Z) correspond to d-fold M3- coverings over the trefoil knot. In this paper, one also investigates quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M3’s obtained from Dehn fillings are explored.



2018 ◽  
Vol 202 (1) ◽  
pp. 81-101 ◽  
Author(s):  
Antonin Guilloux ◽  
Pierre Will
Keyword(s):  


Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo Amaral ◽  
Klee Irwin

A single qubit may be represented on the Bloch sphere or similarly on the $3$-sphere $S^3$. Our goal is to dress this correspondence by converting the language of universal quantum computing (uqc) to that of $3$-manifolds. A magic state and the Pauli group acting on it define a model of uqc as a POVM that one recognizes to be a $3$-manifold $M^3$. E. g., the $d$-dimensional POVMs defined from subgroups of finite index of the modular group $PSL(2,\mathbb{Z})$ correspond to $d$-fold $M^3$- coverings over the trefoil knot. In this paper, one also investigates quantum information on a few \lq universal' knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on SnapPy. Further connections between POVMs based uqc and $M^3$'s obtained from Dehn fillings are explored.



2018 ◽  
Vol 27 (12) ◽  
pp. 1850062
Author(s):  
Zhi-Xiong Tao
Keyword(s):  

This paper studies 2-adjacency between a 3-strand pretzel link and one of the Hopf link, the Solomon’s link and the Whitehead link by using the results that have been obtained about 2-adjacency between knots or links and their polynomials and etc. This paper shows that of all 3-strand pretzel links, only ordinary pretzel links are 2-adjacent to the Hopf link or the Solomon’s link or the Whitehead link. Conversely, these special links are not 2-adjacent to any other 3-strand pretzel links, except for themselves, respectively.



2018 ◽  
Vol 27 (04) ◽  
pp. 1850026
Author(s):  
Hoang-An Nguyen ◽  
Anh T. Tran

The adjoint twisted Alexander polynomial has been computed for twist knots [A. Tran, Twisted Alexander polynomials with the adjoint action for some classes of knots, J. Knot Theory Ramifications 23(10) (2014) 1450051], genus one two-bridge knots [A. Tran, Adjoint twisted Alexander polynomials of genus one two-bridge knots, J. Knot Theory Ramifications 25(10) (2016) 1650065] and the Whitehead link [J. Dubois and Y. Yamaguchi, Twisted Alexander invariant and nonabelian Reidemeister torsion for hyperbolic three dimensional manifolds with cusps, Preprint (2009), arXiv:0906.1500 ]. In this paper, we compute the adjoint twisted Alexander polynomial and nonabelian Reidemeister torsion of twisted Whitehead links.



2018 ◽  
Vol 29 (02) ◽  
pp. 1850013
Author(s):  
Anh T. Tran
Keyword(s):  

We compute the A-polynomial 2-tuple of twisted Whitehead links. As applications, we determine the canonical component of twisted Whitehead links and give a formula for the volume of twisted Whitehead link cone-manifolds.



Sign in / Sign up

Export Citation Format

Share Document