cohomology of lie algebras
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)





Author(s):  
Ivan Limonchenko ◽  
Dmitry Millionshchikov

In this survey, we discuss two research areas related to Massey’s higher operations. The first direction is connected with the cohomology of Lie algebras and the theory of representations. The second main theme is at the intersection of toric topology, homotopy theory of polyhedral products, and the homology theory of local rings, Stanley–Reisner rings of simplicial complexes.



2020 ◽  
pp. 135-160
Author(s):  
Morikuni Goto ◽  
Frank D. Grosshans


2016 ◽  
Vol 16 (09) ◽  
pp. 1750162 ◽  
Author(s):  
Valeriy G. Bardakov ◽  
Mahender Singh

Let [Formula: see text] be a short exact sequence of Lie algebras over a field [Formula: see text], where [Formula: see text] is abelian. We show that the obstruction for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text] lies in the Lie algebra cohomology [Formula: see text]. As a consequence, we obtain a four term exact sequence relating automorphisms, derivations and cohomology of Lie algebras. We also obtain a more explicit necessary and sufficient condition for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text], where [Formula: see text] is a free nilpotent Lie algebra of rank [Formula: see text] and step [Formula: see text].







Sign in / Sign up

Export Citation Format

Share Document