homology theory
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 22 (2) ◽  
pp. 223
Author(s):  
P. Christopher Staecker

In this paper we prove results relating to two homotopy relations and four homology theories developed in the topology of digital images.<br /><br />We introduce a new type of homotopy relation for digitally continuous functions which we call ``strong homotopy.'' Both digital homotopy and strong homotopy are natural digitizations of classical topological homotopy: the difference between them is analogous to the difference between digital 4-adjacency and 8-adjacency in the plane.<br /><br />We also consider four different digital homology theories: a simplicial homology theory by Arslan et al which is the homology of the clique complex, a singular simplicial homology theory by D. W. Lee, a cubical homology theory by Jamil and Ali, and a new kind of cubical homology for digital images with $c_1$-adjacency which is easily computed, and generalizes a construction by Karaca \&amp; Ege. We show that the two simplicial homology theories are isomorphic to each other, but distinct from the two cubical theories.<br /><br />We also show that homotopic maps have the same induced homomorphisms in the cubical homology theory, and strong homotopic maps additionally have the same induced homomorphisms in the simplicial theory.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1819
Author(s):  
Q-Heung Choi ◽  
Tacksun Jung

The research of the fractional Orlicz-Sobolev space and the fractional N-Laplacian operators will give the development of nonlinear elasticity theory, electro rheological fluids, non-Newtonian fluid theory in a porous medium as well as Probability and Analysis as they proved to be accurate models to describe different phenomena in Physics, Finance, Image processing and Ecology. We study the number of weak solutions for one-dimensional fractional N-Laplacian systems in the product of the fractional Orlicz-Sobolev spaces, where the corresponding functionals of one-dimensional fractional N-Laplacian systems are even and symmetric. We obtain two results for these problems. One result is that these problems have at least one nontrivial solution under some conditions. The other result is that these problems also have infinitely many weak solutions on the same conditions. We use the variational approach, critical point theory and homology theory on the product of the fractional Orlicz-Sobolev spaces.


Author(s):  
Javier Fernández de Bobadilla ◽  
Sonja Heinze ◽  
Maria Pe Pereira

Abstract We introduce a metric homotopy theory, which we call moderately discontinuous homotopy, designed to capture Lipschitz properties of metric singular subanalytic germs. It matches with the moderately discontinuous homology theory recently developed by the authors and E. Sampaio. The $k$-th MD homotopy group is a group $MDH^b_{\bullet }$ for any $b\in [1,\infty ]$ together with homomorphisms $MD\pi ^b\to MD\pi ^{b^{\prime}}$ for any $b\geq b^{\prime}$. We develop all its basic properties including finite presentation of the groups, long homotopy sequences of pairs, metric homotopy invariance, Seifert van Kampen Theorem, and the Hurewicz Isomorphism Theorem. We prove comparison theorems that allow to relate the metric homotopy groups with topological homotopy groups of associated spaces. For $b=1$, it recovers the homotopy groups of the tangent cone for the outer metric and of the Gromov tangent cone for the inner one. In general, for $b=\infty $, the $MD$-homotopy recovers the homotopy of the punctured germ. Hence, our invariant can be seen as an algebraic invariant interpolating the homotopy from the germ to its tangent cone. We end the paper with a full computation of our invariant for any normal surface singularity for the inner metric. We also provide a full computation of the MD-homology in the same case.


2021 ◽  
pp. 2150053
Author(s):  
Minkyu Kim

The purpose of this paper is to study some obstruction classes induced by a construction of a homotopy-theoretic version of projective TQFT (projective HTQFT for short). A projective HTQFT is given by a symmetric monoidal projective functor whose domain is the cospan category of pointed finite CW-spaces instead of a cobordism category. We construct a pair of projective HTQFT’s starting from a [Formula: see text]-valued Brown functor where [Formula: see text] is the category of bicommutative Hopf algebras over a field [Formula: see text] : the cospanical path-integral and the spanical path-integral of the Brown functor. They induce obstruction classes by an analogue of the second cohomology class associated with projective representations. In this paper, we derive some formulae of those obstruction classes. We apply the formulae to prove that the dimension reduction of the cospanical and spanical path-integrals are lifted to HTQFT’s. In another application, we reproduce the Dijkgraaf–Witten TQFT and the Turaev–Viro TQFT from an ordinary [Formula: see text]-valued homology theory.


2021 ◽  
Vol 30 (07) ◽  
Author(s):  
Viktória Földvári

According to the idea of Ozsváth, Stipsicz and Szabó, we define the knot invariant [Formula: see text] without the holomorphic theory, using constructions from grid homology. We develop a homology theory using grid diagrams, and show that [Formula: see text], as introduced this way, is a well-defined knot invariant. We reprove some important propositions using the new techniques, and show that [Formula: see text] provides a lower bound on the unknotting number.


2021 ◽  
Vol 157 (4) ◽  
pp. 710-769
Author(s):  
Rostislav Akhmechet ◽  
Vyacheslav Krushkal ◽  
Michael Willis

We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $r\geq ~2$ we associate to an annular link $L$ a naive $\mathbb {Z}/r\mathbb {Z}$ -equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $L$ as modules over $\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$ . The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 744
Author(s):  
Andrei Bura ◽  
Qijun He ◽  
Christian Reidys

An RNA bi-structure is a pair of RNA secondary structures that are considered as arc-diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained through the intersections of loops. The weighted homology of the intersection complex X features a new boundary operator and is formulated over a discrete valuation ring, R. We establish basic properties of the weighted complex and show how to deform it in order to eliminate any 3-simplices. We connect the simplicial homology, Hi(X), and weighted homology, Hi,R(X), in two ways: first, via chain maps, and second, via the relative homology. We compute H0,R(X) by means of a recursive contraction procedure on a weighted spanning tree and H1,R(X) via an inflation map, by which the simplicial homology of the 1-skeleton allows us to determine the weighted homology H1,R(X). The homology module H2,R(X) is naturally obtained from H2(X) via chain maps. Furthermore, we show that all weighted homology modules Hi,R(X) are trivial for i>2. The invariant factors of our structure theorems, as well as the weighted Whitehead moves facilitating the removal of filled tetrahedra, are given a combinatorial interpretation. The weighted homology of bi-structures augments the simplicial counterpart by introducing novel torsion submodules and preserving the free submodules that appear in the simplicial homology.


Author(s):  
Djamel Bouchaffra ◽  
Faycal Ykhlef

The need for environmental protection, monitoring, and security is increasing, and land cover change detection (LCCD) can aid in the valuation of burned areas, the study of shifting cultivation, the monitoring of pollution, the assessment of deforestation, and the analysis of desertification, urban growth, and climate change. Because of the imminent need and the availability of data repositories, numerous mathematical models have been devised for change detection. Given a sample of remotely sensed images from the same region acquired at different dates, the models investigate if a region has undergone change. Even if there is no substantial advantage to using pixel-based classification over object-based classification, a pixel-based change detection approach is often adopted. A pixel can encompass a large region, and it is imperative to determine whether this pixel (input) has changed or not. A changed image is compared to the available ground truth image for pixel-based performance evaluation. Some existing change detection systems do not take into account reversible changes due to seasonal weather effects. In other words, when snow falls in a region, the land cover is not considered as a change because it is seasonal (reversible). Some approaches exploit time series of Landsat images, which are based on the Normalized Difference Vegetation Index technique. Others evaluate built-up expansion to assess urban morphology changes using an unsupervised approach that relies on labels clustering. Change detection methods have also been applied to the field of disaster management using object-oriented image classification. Some methodologies are based on spectral mixture analysis. Other techniques invoke a similarity measure based on the evolution of the local statistics of the image between two dates for vegetation LCCD. Probabilistic approaches based on maximum entropy have been applied to vegetation and forest areas, such as Hustai National Park in Mongolia. Researchers in this field have proposed an LCCD scheme based on a feed-forward neural network using backpropagation for training. This paper invokes the new concept of homology theory, a subfield of algebraic topology. Homology theory is incorporated within a Structural Hidden Markov Model.


Sign in / Sign up

Export Citation Format

Share Document