damage front
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Ye.V. Klymenko ◽  
◽  
N.R. Antoniuk ◽  
E.V. Maksiuta ◽  
◽  
...  

Abstract. The article presents the results of experimental and theoretical studies of the work, the parameters of the stress-strain state and the methodology for calculating the residual bearing capacity of reinforced concrete I-section columns damaged during operation and combat operations. The analysis of the literature on this subject made it possible to study the main factors affecting the residual bearing capacity, namely: the depth of damage; the angle of inclination of the damage front; relative eccentricity of application of external compressive force. A three-factor three-level experimental design has been developed. The conducted field tests of prototypes of damaged reinforced concrete columns made it possible to determine the parameters of the stress-strain state of damaged elements and their actual residual bearing capacity. On the basis of the performed experimental-statistical modeling, the main factors influencing the residual bearing capacity of damaged elements have been established. The prerequisites for calculating damaged reinforced concrete I-beams are proposed and equilibrium equations are drawn up. The proposals set out in the article are based on the main provisions of the current norms and expand the effect of their use. The analysis of influence of various factors on bearing capacity of the damaged I-beam reinforced concrete columns is carried out. It was found that the columns can withstand a maximum destructive load of 1738 kN at an angle of inclination of the damage front of 60о and in the absence of relative eccentricity. And the least destructive load columns can withstand in the absence of the angle of the damage front, and the relative eccentricity will be 1/8 of the applied load. On the basis of the conducted researches the technique of definition of reliably substantiated residual bearing capacity of reinforced concrete compressed elements of a T-profile profile damaged in the course of operation is developed. This makes it possible to determine the possibility of further trouble-free operation of structures or the need for their reinforcement or reconstruction.


Author(s):  
Nicolas Moës ◽  
Paul-Emile Bernard ◽  
Claude Stolz ◽  
Nicolas Chevaugeon

In this paper, we discuss a new way to model damage growth in solids. A level set is used to separate the undamaged zone from the damaged zone. In the damaged zone, the damage variable is an explicit function of the level set. This function is a parameter of the model. Beyond a critical length, it is assumed that the material is totally damaged, thus allowing a straightforward transition to fracture. The damage growth is expressed as a level set propagation. The configurational force driving the damage front is non local in the sense that it averages information over the thickness in the wake of the front. Three important theoretical advantages of the proposed approach are as follows: (a) The zone for which the materials is fully damaged is located inside a clearly identified domain (given by an iso-level set). (b) The non-locality steps in gradually in the model. At initiation the model is fully local. At initiation, micro-cracks being absent no length scale should prevail. (c) It is straightforward to prove that dissipation is positive. A numerical experiment of the cracking of a multiply perforated plate is discussed.


Sign in / Sign up

Export Citation Format

Share Document