level set approach
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 45)

H-INDEX

41
(FIVE YEARS 2)

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2387-2406
Author(s):  
Mahtab Rashidifard ◽  
Jérémie Giraud ◽  
Mark Lindsay ◽  
Mark Jessell ◽  
Vitaliy Ogarko

Abstract. One of the main tasks in 3D geological modeling is the boundary parametrization of the subsurface from geological observations and geophysical inversions. Several approaches have been developed for geometric inversion and joint inversion of geophysical datasets. However, the robust, quantitative integration of models and datasets with different spatial coverage, resolution, and levels of sparsity remains challenging. One promising approach for recovering the boundary of the geological units is the utilization of a level set inversion method with potential field data. We focus on constraining 3D geometric gravity inversion with sparse lower-uncertainty information from a 2D seismic section. We use a level set approach to recover the geometry of geological bodies using two synthetic examples and data from the geologically complex Yamarna Terrane (Yilgarn Craton, Western Australia). In this study, a 2D seismic section has been used for constraining the location of rock unit boundaries being solved during the 3D gravity geometric inversion. The proposed work is the first we know of that automates the process of adding spatially distributed constraints to the 3D level set inversion. In many hard-rock geoscientific investigations, seismic data are sparse, and our results indicate that unit boundaries from gravity inversion can be much better constrained with seismic information even though they are sparsely distributed within the model. Thus, we conclude that it has the potential to bring the state of the art a step further towards building a 3D geological model incorporating several sources of information in similar regions of investigation.


2021 ◽  
Vol 105 ◽  
pp. 107273
Author(s):  
Elizângela de Souza Rebouças ◽  
Fátima Nelsizeuma Sombra de Medeiros ◽  
Regis Cristiano P. Marques ◽  
João Victor S. Chagas ◽  
Matheus T. Guimarães ◽  
...  

2021 ◽  
Author(s):  
Mahtab Rashidifard ◽  
Jérémie Giraud ◽  
Mark Lindsay ◽  
Mark Jessell ◽  
Vitaliy Ogarko

Abstract. One of the main tasks in 3D geological modelling is the boundary parametrization of the subsurface from geological observations and geophysical inversions. Several approaches have been developed for geometric inversion and joint inversion of geophysical datasets. However, the robust, quantitative integration of models and datasets with different spatial coverage, resolution, and levels of sparsity remains challenging. One promising approach for recovering the boundary of the geological units is the utilization of a level-set inversion method with potential field data. We focus on constraining 3D geometric gravity inversion with sparse lower-uncertainty information from a 2D seismic section. We use a level-set approach to recover the geometry of geological bodies using two synthetic examples and data from the geologically complex Yamarna terrane (Yilgarn craton, Western Australia). In this study, a 2D seismic section has been used for constraining the location of rock unit boundaries being solved during the 3D gravity geometric inversion. The proposed work is the first we know of that automates the process of adding spatially distributed constraints to the 3D level-set inversion. In many hard-rock geoscientific investigations, seismic data is sparse and our results indicate that unit boundaries from gravity inversion can be much better constrained with seismic information even though they are sparsely distributed within the model. Thus, we conclude that it has the potential to bring the state of the art a step further towards building a 3D geological model incorporating several sources of information in similar regions of investigation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meisam Takalloozadeh ◽  
Gil Ho Yoon

Purpose Body forces are always applied to structures in the form of the weight of materials. In some cases, they can be neglected in comparison with other applied forces. Nevertheless, there is a wide range of structures in civil and mechanical engineering in which weight or other types of body forces are the main portions of the applied loads. The optimal topology of these structures is investigated in this study. Design/methodology/approach Topology optimization plays an increasingly important role in structural design. In this study, the topological derivative under body forces is used in a level-set-based topology optimization method. Instability during the optimization process is addressed, and a heuristic solution is proposed to overcome the challenge. Moreover, body forces in combination with thermal loading are investigated in this study. Findings Body forces are design-dependent loads that usually add complexity to the optimization process. Some problems have already been addressed in density-based topology optimization methods. In the present study, the body forces in a topological level-set approach are investigated. This paper finds that the used topological derivative is a flat field that causes some instabilities in the optimization process. The main novelty of this study is a technique used to overcome this challenge by using a weighted combination. Originality/value There is a lack of studies on level-set approaches that account for design-dependent body forces and the proposed method helps to understand the challenges posed in such methods. A powerful level-set-based approach is used for this purpose. Several examples are provided to illustrate the efficiency of this method. Moreover, the results show the effect of body forces and thermal loading on the optimal layout of the structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yoo Na Hwang ◽  
Min Ji Seo ◽  
Sung Min Kim

The segmentation of a skin lesion is regarded as very challenging because of the low contrast between the lesion and the surrounding skin, the existence of various artifacts, and different imaging acquisition conditions. The purpose of this study is to segment melanocytic skin lesions in dermoscopic and standard images by using a hybrid model combining a new hierarchical K -means and level set approach, called HK-LS. Although the level set method is usually sensitive to initial estimation, it is widely used in biomedical image segmentation because it can segment more complex images and does not require a large number of manually labelled images. The preprocessing step is used for the proposed model to be less sensitive to intensity inhomogeneity. The proposed method was evaluated on medical skin images from two publicly available datasets including the PH2 database and the Dermofit database. All skin lesions were segmented with high accuracies (>94%) and Dice coefficients (>0.91) of the ground truth on two databases. The quantitative experimental results reveal that the proposed method yielded significantly better results compared to other traditional level set models and has a certain advantage over the segmentation results of U-net in standard images. The proposed method had high clinical applicability for the segmentation of melanocytic skin lesions in dermoscopic and standard images.


Sign in / Sign up

Export Citation Format

Share Document