cayley sum graph
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 40 (2) ◽  
pp. 217
Author(s):  
Mojgan Afkhami ◽  
Mehdi Hassankhani ◽  
Kazem Khashyarmanesh
Keyword(s):  

2018 ◽  
Vol 17 (07) ◽  
pp. 1850125
Author(s):  
T. Tamizh Chelvam ◽  
K. Selvakumar ◽  
V. Ramanathan

Let [Formula: see text] be a commutative ring, [Formula: see text] the set of all ideals of [Formula: see text] and [Formula: see text], a subset of [Formula: see text]. The Cayley sum graph of ideals of [Formula: see text], denoted by Cay[Formula: see text], is a simple undirected graph with vertex set is the set [Formula: see text] and, for any two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text], for some [Formula: see text] in [Formula: see text]. In this paper, we study connectedness, Eulerian and Hamiltonian properties of Cay[Formula: see text]. Moreover, we characterize all commutative Artinian rings [Formula: see text] whose Cay[Formula: see text] is toroidal.


2018 ◽  
Vol 17 (06) ◽  
pp. 1850116
Author(s):  
Saadoun Mahmoudi ◽  
Shahram Mehry ◽  
Reza Safakish

Let [Formula: see text] be a subset of a commutative graded ring [Formula: see text]. The Cayley graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The Cayley sum graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be the set of homogeneous elements and [Formula: see text] be the set of zero-divisors of [Formula: see text]. In this paper, we study [Formula: see text] (total graph) and [Formula: see text]. In particular, if [Formula: see text] is an Artinian graded ring, we show that [Formula: see text] is isomorphic to a Hamming graph and conversely any Hamming graph is isomorphic to a subgraph of [Formula: see text] for some finite graded ring [Formula: see text].


2014 ◽  
Vol 96 (3) ◽  
pp. 289-302 ◽  
Author(s):  
M. AFKHAMI ◽  
Z. BARATI ◽  
K. KHASHYARMANESH ◽  
N. PAKNEJAD

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.


Sign in / Sign up

Export Citation Format

Share Document