Cayley sum graph of ideals of commutative rings

2018 ◽  
Vol 17 (07) ◽  
pp. 1850125
Author(s):  
T. Tamizh Chelvam ◽  
K. Selvakumar ◽  
V. Ramanathan

Let [Formula: see text] be a commutative ring, [Formula: see text] the set of all ideals of [Formula: see text] and [Formula: see text], a subset of [Formula: see text]. The Cayley sum graph of ideals of [Formula: see text], denoted by Cay[Formula: see text], is a simple undirected graph with vertex set is the set [Formula: see text] and, for any two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text], for some [Formula: see text] in [Formula: see text]. In this paper, we study connectedness, Eulerian and Hamiltonian properties of Cay[Formula: see text]. Moreover, we characterize all commutative Artinian rings [Formula: see text] whose Cay[Formula: see text] is toroidal.

Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


2014 ◽  
Vol 96 (3) ◽  
pp. 289-302 ◽  
Author(s):  
M. AFKHAMI ◽  
Z. BARATI ◽  
K. KHASHYARMANESH ◽  
N. PAKNEJAD

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.


2020 ◽  
pp. 2070-2076
Author(s):  
F. H. Abdulqadr

In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050089
Author(s):  
V. Soleymanivarniab ◽  
A. Tehranian ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with nonzero identity. The annihilator graph of [Formula: see text], denoted by [Formula: see text], is the (undirected) graph whose vertex set is the set of all nonzero zero-divisors of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study the metric dimension of annihilator graphs associated with commutative rings and some metric dimension formulae for annihilator graphs are given.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250049 ◽  
Author(s):  
F. ALINIAEIFARD ◽  
M. BEHBOODI

Let R be a commutative ring and 𝔸(R) be the set of ideals with nonzero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). We investigate commutative rings R whose annihilating-ideal graphs have positive genus γ(𝔸𝔾(R)). It is shown that if R is an Artinian ring such that γ(𝔸𝔾(R)) < ∞, then either R has only finitely many ideals or (R, 𝔪) is a Gorenstein ring with maximal ideal 𝔪 and v.dimR/𝔪𝔪/𝔪2= 2. Also, for any two integers g ≥ 0 and q > 0, there are only finitely many isomorphism classes of Artinian rings R satisfying the conditions: (i) γ(𝔸𝔾(R)) = g and (ii) |R/𝔪| ≤ q for every maximal ideal 𝔪 of R. Also, it is shown that if R is a non-domain Noetherian local ring such that γ(𝔸𝔾(R)) < ∞, then either R is a Gorenstein ring or R is an Artinian ring with only finitely many ideals.


2014 ◽  
Vol 14 (01) ◽  
pp. 1550008 ◽  
Author(s):  
A. Ghorbani ◽  
Z. Nazemian

In this paper, we define and study a valuation dimension for commutative rings. The valuation dimension is a measure of how far a commutative ring deviates from being valuation. It is shown that a ring R with valuation dimension has finite uniform dimension. We prove that a ring R is Noetherian (respectively, Artinian) if and only if the ring R × R has (respectively, finite) valuation dimension if and only if R has (respectively, finite) valuation dimension and all cyclic uniserial modules are Noetherian (respectively, Artinian). We show that the class of all rings of finite valuation dimension strictly lies between the class of Artinian rings and the class of semi-perfect rings.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


Sign in / Sign up

Export Citation Format

Share Document