Cayley graphs of graded rings

2018 ◽  
Vol 17 (06) ◽  
pp. 1850116
Author(s):  
Saadoun Mahmoudi ◽  
Shahram Mehry ◽  
Reza Safakish

Let [Formula: see text] be a subset of a commutative graded ring [Formula: see text]. The Cayley graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The Cayley sum graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be the set of homogeneous elements and [Formula: see text] be the set of zero-divisors of [Formula: see text]. In this paper, we study [Formula: see text] (total graph) and [Formula: see text]. In particular, if [Formula: see text] is an Artinian graded ring, we show that [Formula: see text] is isomorphic to a Hamming graph and conversely any Hamming graph is isomorphic to a subgraph of [Formula: see text] for some finite graded ring [Formula: see text].

10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250184 ◽  
Author(s):  
MOJGAN AFKHAMI ◽  
ZAHRA BARATI ◽  
KAZEM KHASHYARMANESH

In this paper, we introduce the Cayley graph of a partially ordered set (poset). Let (P, ≤) be a poset, and let S be a subset of P. We define the undirected Cayley graph of P, denoted by Cay (P, S), as a graph with vertex-set P and edge-set E consisting of those sets {x, y} such that y ∈ {x, s}ℓ or x ∈ {y, s}ℓ for some s ∈ S, where for a subset T of P, Tℓ is the set of all x ∈ P such that x ≤ t, for all t ∈ T. We study some basic properties of Cay (P, S) such as connectivity, diameter and girth.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250198 ◽  
Author(s):  
T. TAMIZH CHELVAM ◽  
T. ASIR

Let R be a commutative ring and Z(R) be its set of all zero-divisors. Anderson and Badawi [The total graph of a commutative ring, J. Algebra320 (2008) 2706–2719] introduced the total graph of R, denoted by TΓ(R), as the undirected graph with vertex set R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). Tamizh Chelvam and Asir [Domination in the total graph of a commutative ring, to appear in J. Combin. Math. Combin. Comput.] obtained the domination number of the total graph and studied certain other domination parameters of TΓ(R) where R is a commutative Artin ring. The intersection graph of gamma sets in TΓ(R) is denoted by ITΓ(R). Tamizh Chelvam and Asir [Intersection graph of gamma sets in the total graph, Discuss. Math. Graph Theory32 (2012) 339–354, doi:10.7151/dmgt.1611] initiated a study about the intersection graph ITΓ (ℤn) of gamma sets in TΓ(ℤn). In this paper, we study about ITΓ(R), where R is a commutative Artin ring. Actually we investigate the interplay between graph-theoretic properties of ITΓ(R) and ring-theoretic properties of R. At the first instance, we prove that diam (ITΓ(R)) ≤ 2 and gr (ITΓ(R)) ≤ 4. Also some characterization results regarding completeness, bipartite, cycle and chordal nature of ITΓ(R) are given. Further, we discuss about the vertex-transitive property of ITΓ(R). At last, we obtain all commutative Artin rings R for which ITΓ(R) is either planar or toroidal or genus two.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950013
Author(s):  
Alireza Abdollahi ◽  
Maysam Zallaghi

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.


1998 ◽  
Vol 57 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G with 1 ∉ S, the Cayley graph Cay(G, S) is the digraph with vertex set G such that (x, y) is an arc if and only if yx−1 ∈ S. The Cayley graph Cay(G, S) is called a CI-graph if, for any T ⊂ G, whenever Cay (G, S) ≅ Cay(G, T) there is an element a σ ∈ Aut(G) such that Sσ = T. For a positive integer m, G is called an m-DCI-group if all Cayley graphs of G of valency at most m are CI-graphs; G is called a connected m-DCI-group if all connected Cayley graphs of G of valency at most m are CI-graphs. The problem of determining Abelian m-DCI-groups is a long-standing open problem. It is known from previous work that all Abelian m-DCI-groups lie in an explicitly determined class of Abelian groups. First we reduce the problem of determining Abelian m-DCI-groups to the problem of determining whether every subgroup of a member of is a connected m-DCI-group. Then (for a finite group G, letting p be the least prime divisor of |G|,) we completely classify Abelian connected (p + 1)-DCI-groups G, and as a corollary, we completely classify Abelian m-DCI-groups G for m ≤ p + 1. This gives many earlier results when p = 2.


10.37236/211 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
A. Abdollahi ◽  
E. Vatandoost

Let $G$ be a non-trivial group, $S\subseteq G\setminus \{1\}$ and $S=S^{-1}:=\{s^{-1} \;|\; s\in S\}$. The Cayley graph of $G$ denoted by $\Gamma(S:G)$ is a graph with vertex set $G$ and two vertices $a$ and $b$ are adjacent if $ab^{-1}\in S$. A graph is called integral, if its adjacency eigenvalues are integers. In this paper we determine all connected cubic integral Cayley graphs. We also introduce some infinite families of connected integral Cayley graphs.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050051
Author(s):  
Majid Arezoomand ◽  
Afshin Behmaram ◽  
Mohsen Ghasemi ◽  
Parivash Raeighasht

For a group [Formula: see text] and a subset [Formula: see text] of [Formula: see text] the bi-Cayley graph BCay[Formula: see text] of [Formula: see text] with respect to [Formula: see text] is the bipartite graph with vertex set [Formula: see text] and edge set [Formula: see text]. A bi-Cayley graph BCay[Formula: see text] is called a BCI-graph if for any bi-Cayley graph BCay[Formula: see text], [Formula: see text] implies that [Formula: see text] for some [Formula: see text] and [Formula: see text]. A group [Formula: see text] is called a [Formula: see text]-BCI-group if all bi-Cayley graphs of [Formula: see text] with valency at most [Formula: see text] are BCI-graphs. In this paper, we characterize the [Formula: see text]-BCI dihedral groups for [Formula: see text]. Also, we show that the dihedral group [Formula: see text] ([Formula: see text] is prime) is a [Formula: see text]-BCI-group.


2011 ◽  
Vol 03 (04) ◽  
pp. 413-421 ◽  
Author(s):  
T. TAMIZH CHELVAM ◽  
T. ASIR

For a commutative ring R, let Z(R) be its set of zero-divisors. The total graph of R, denoted by TΓ(R), is the undirected graph with vertex set R, and for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). Tamizh Chelvam and Asir studied about the domination in the total graph of a commutative ring R. In particular, it was proved that the domination number γ(TΓ(ℤn)) = p1 where p1 is the smallest prime divisor of n. In this paper, we characterize all the γ-sets in TΓ(ℤn). Also, we obtain the values of other domination parameters like independent, total and perfect domination numbers of the total graph on ℤn.


Sign in / Sign up

Export Citation Format

Share Document