local gouging
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Zezhong C. Chen ◽  
Gang Liu

Due to their complex geometries, sculptured surface parts should be machined with multiple cutters of optimal sizes for high quality and productivity. Current methods of determining cutter sizes, however, are conservative and inefficient; their repeating process includes subjective cutter selection, intensive tool-path generation, and time-consuming gouging-and-interference detection in simulation. Our research proposes a new intelligent approach to multiple standard cutters of maximum sizes for three-axis sculptured surface machining. An innovative generic model of maximum allowable cutters in three-axis surface milling is built to eliminate any cutter causing local gouging and global interference. After the optimum standard cutters are automatically selected, their accessible regions can be identified, and the corresponding tool-paths can be generated, respectively. This approach is practical and effective in the process planning for three-axis milling of sculptured surface parts.


Materials ◽  
2003 ◽  
Author(s):  
Weihang Zhu ◽  
Yuan-Shih Lee

In this paper, a Two-phase approach to tool collision detection and local gouging elimination is proposed for haptic pencil-cut of sculptured surfaces. Pencil-cut is a special kind of machining operation, whose purpose is to use relatively smaller tools to remove rest material on the corners or highly curved regions that are inaccessible by bigger tools. Tool orientation determination and tool collision avoidance are critical issues for 5-axis pencil-cut tool path planning. Detailed techniques of haptic rendering and tool interference avoidance are discussed for haptic-aided 5-axis pencil-cut tool path generation. Hardware and software implementation of the haptic pencil-cut system with practical examples are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document