sculptured surface machining
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 0)

H-INDEX

24
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wenping Mou ◽  
Shaowei Zhu ◽  
Menghao Zhu ◽  
Lei Han ◽  
Lei Jiang

Cutting force prediction is very important to optimize machining parameters and monitor machining state. In order to predict cutting force of sculptured surface machining with ball end mill accurately, tool posture, cutting edge, contact state between cutter, and workpiece are studied. Firstly, an instantaneous motion model of ball end mill for sculptured surface is established. The instantaneous milling coordinate system and instantaneous tool coordinate system are defined to describe the position and orientation of tool, and the transformation matrix between coordinate systems is derived. Secondly, by solving three boundaries around engagement of cutter and workpiece, a cutter-workpiece engagement model related to tool posture, milling parameters, and tool path is established. It has good adaptability to the variable tool axis relative to the machining surface. Finally, an algorithm of thickness about an instantaneous undeformed chip is researched, and a prediction model of cutting force is realized with microelement cutting theory. Also, the model is suitable for sculptured surface machining with arbitrary tool posture and feed direction. The accuracy of the proposed prediction model was verified by a series of experiments.





Author(s):  
N. A. Fountas ◽  
N. M. Vaxevanidis ◽  
C. I. Stergiou ◽  
R. Benhadj-Djilali

Research on the area of sculptured surface machining optimization is currently directed towards the implementation of artificial intelligence techniques. This chapter aims at presenting a novel approach of optimizing machining strategies applied to manufacture complex part geometries. Towards this direction a new genetic-evolutionary algorithm based on the virus theory of evolution is developed as a hosted module to a commercial and widely known CAM system. The new genetic algorithm automatically evaluates pairs of candidate solutions among machining parameters for roughing and finishing operations so as to optimize their values for obtaining optimum machining programs for sculptured parts in terms of productivity and quality. This is achieved by introducing new directions of manipulating manufacturing software tools through programming and customization. The environment was tested for its efficiency and has been proven capable of providing applicable results for the machining of sculptured surfaces.



2014 ◽  
Vol 75 (5-8) ◽  
pp. 909-931 ◽  
Author(s):  
Nikolaos A. Fountas ◽  
Nikolaos M. Vaxevanidis ◽  
Constantinos I. Stergiou ◽  
Redha Benhadj-Djilali




Sign in / Sign up

Export Citation Format

Share Document