dynamic job shop
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 31)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 190 ◽  
pp. 107969
Author(s):  
Libing Wang ◽  
Xin Hu ◽  
Yin Wang ◽  
Sujie Xu ◽  
Shijun Ma ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 909
Author(s):  
Hankun Zhang ◽  
Borut Buchmeister ◽  
Xueyan Li ◽  
Robert Ojstersek

As a well-known NP-hard problem, the dynamic job shop scheduling problem has significant practical value, so this paper proposes an Improved Heuristic Kalman Algorithm to solve this problem. In Improved Heuristic Kalman Algorithm, the cellular neighbor network is introduced, together with the boundary handling function, and the best position of each individual is recorded for constructing the cellular neighbor network. The encoding method is introduced based on the relative position index so that the Improved Heuristic Kalman Algorithm can be applied to solve the dynamic job shop scheduling problem. Solving the benchmark example of dynamic job shop scheduling problem and comparing it with the original Heuristic Kalman Algorithm and Genetic Algorithm-Mixed, the results show that Improved Heuristic Kalman Algorithm is effective for solving the dynamic job shop scheduling problem. The convergence rate of the Improved Heuristic Kalman Algorithm is reduced significantly, which is beneficial to avoid the algorithm from falling into the local optimum. For all 15 benchmark instances, Improved Heuristic Kalman Algorithm and Heuristic Kalman Algorithm have obtained the best solution obtained by Genetic Algorithm-Mixed. Moreover, for 9 out of 15 benchmark instances, they achieved significantly better solutions than Genetic Algorithm-Mixed. They have better robustness and reasonable running time (less than 30 s even for large size problems), which means that they are very suitable for solving the dynamic job shop scheduling problem. According to the dynamic job shop scheduling problem applicability, the integration-communication protocol was presented, which enables the transfer and use of the Improved Heuristic Kalman Algorithm optimization results in the conventional Simio simulation environment. The results of the integration-communication protocol proved the numerical and graphical matching of the optimization results and, thus, the correctness of the data transfer, ensuring high-level usability of the decision-making method in a real-world environment.


2021 ◽  
Author(s):  
John Park ◽  
Yi Mei ◽  
Su Nguyen ◽  
Gang Chen ◽  
Mengjie Zhang

Genetic programming based hyper-heuristic (GP-HH) approaches that evolve ensembles of dispatching rules have been effectively applied to dynamic job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been shown to be more robust than existing GP-HH approaches that evolve single dispatching rules for dynamic JSS problems. For ensemble learning in classification, the design of how the members of the ensembles interact with each other, e.g., through various combination schemes, is important for developing effective ensembles for specific problems. In this paper, we investigate and carry out systematic analysis for four popular combination schemes. They are majority voting, which has been applied to dynamic JSS, followed by linear combination, weighted majority voting and weighted linear combination, which have not been applied to dynamic JSS. In addition, we propose several mea-sures for analysing the decision making process in the ensembles evolved by GP. The results show that linear combination is generally better for the dynamic JSS problem than the other combination schemes investigated. In addition, the different combination schemes result in significantly different interactions between the members of the ensembles. Finally, the analysis based on the measures shows that the behaviours of the evolved ensembles are significantly affected by the combination schemes. Weighted majority voting has bias towards single members of the ensembles. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/


2021 ◽  
Author(s):  
John Park ◽  
Yi Mei ◽  
Su Nguyen ◽  
Gang Chen ◽  
Mengjie Zhang

Genetic programming based hyper-heuristic (GP-HH) approaches that evolve ensembles of dispatching rules have been effectively applied to dynamic job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been shown to be more robust than existing GP-HH approaches that evolve single dispatching rules for dynamic JSS problems. For ensemble learning in classification, the design of how the members of the ensembles interact with each other, e.g., through various combination schemes, is important for developing effective ensembles for specific problems. In this paper, we investigate and carry out systematic analysis for four popular combination schemes. They are majority voting, which has been applied to dynamic JSS, followed by linear combination, weighted majority voting and weighted linear combination, which have not been applied to dynamic JSS. In addition, we propose several mea-sures for analysing the decision making process in the ensembles evolved by GP. The results show that linear combination is generally better for the dynamic JSS problem than the other combination schemes investigated. In addition, the different combination schemes result in significantly different interactions between the members of the ensembles. Finally, the analysis based on the measures shows that the behaviours of the evolved ensembles are significantly affected by the combination schemes. Weighted majority voting has bias towards single members of the ensembles. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/


2021 ◽  
Vol 16 (1) ◽  
pp. 23-36
Author(s):  
W. Tian ◽  
H.P. Zhang

Ideally, the solution to job-shop scheduling problem (JSP) should effectively reduce the cost of manpower and materials, thereby enhancing the core competitiveness of the manufacturer. Deep learning (DL) neural networks have certain advantages in handling complex dynamic JSPs with a massive amount of historical data. Therefore, this paper proposes a dynamic job-shop scheduling model based on DL. Firstly, a data prediction model was established for dynamic job-shop scheduling, with long short-term memory network (LSTM) as the basis; the Dropout technology and adaptive moment estimation (ADAM) were introduced to enhance the generalization ability and prediction effect of the model. Next, the dynamic JSP was described in details, and three objective functions, namely, maximum makespan, total device load, and key device load, were chosen for optimization. Finally, the multi-objective problem of dynamic JSP scheduling was solved by the improved multi-objective genetic algorithm (MOGA). The effectiveness of the algorithm was proved experimentally.


Author(s):  
Sildenir Alves Ribeiro ◽  
Eber Assis Schmitz ◽  
Mônica Ferreira da Silva ◽  
Antônio Juarez S. M. de Alencar

Sign in / Sign up

Export Citation Format

Share Document