weighted majority voting
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

Games ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 91
Author(s):  
Xavier Molinero ◽  
Maria Serna ◽  
Marc Taberner-Ortiz

In this paper, we analyze the frequency distributions of weights and quotas in weighted majority voting games (WMVG) up to eight players. We also show different procedures that allow us to obtain some minimum or minimum sum representations of WMVG, for any desired number of players, starting from a minimum or minimum sum representation. We also provide closed formulas for the number of WMVG with n players having a minimum representation with quota up to three, and some subclasses of this family of games. Finally, we complement these results with some upper bounds related to weights and quotas.


2021 ◽  
Author(s):  
John Park ◽  
Yi Mei ◽  
Su Nguyen ◽  
Gang Chen ◽  
Mengjie Zhang

Genetic programming based hyper-heuristic (GP-HH) approaches that evolve ensembles of dispatching rules have been effectively applied to dynamic job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been shown to be more robust than existing GP-HH approaches that evolve single dispatching rules for dynamic JSS problems. For ensemble learning in classification, the design of how the members of the ensembles interact with each other, e.g., through various combination schemes, is important for developing effective ensembles for specific problems. In this paper, we investigate and carry out systematic analysis for four popular combination schemes. They are majority voting, which has been applied to dynamic JSS, followed by linear combination, weighted majority voting and weighted linear combination, which have not been applied to dynamic JSS. In addition, we propose several mea-sures for analysing the decision making process in the ensembles evolved by GP. The results show that linear combination is generally better for the dynamic JSS problem than the other combination schemes investigated. In addition, the different combination schemes result in significantly different interactions between the members of the ensembles. Finally, the analysis based on the measures shows that the behaviours of the evolved ensembles are significantly affected by the combination schemes. Weighted majority voting has bias towards single members of the ensembles. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/


2021 ◽  
Author(s):  
John Park ◽  
Yi Mei ◽  
Su Nguyen ◽  
Gang Chen ◽  
Mengjie Zhang

Genetic programming based hyper-heuristic (GP-HH) approaches that evolve ensembles of dispatching rules have been effectively applied to dynamic job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been shown to be more robust than existing GP-HH approaches that evolve single dispatching rules for dynamic JSS problems. For ensemble learning in classification, the design of how the members of the ensembles interact with each other, e.g., through various combination schemes, is important for developing effective ensembles for specific problems. In this paper, we investigate and carry out systematic analysis for four popular combination schemes. They are majority voting, which has been applied to dynamic JSS, followed by linear combination, weighted majority voting and weighted linear combination, which have not been applied to dynamic JSS. In addition, we propose several mea-sures for analysing the decision making process in the ensembles evolved by GP. The results show that linear combination is generally better for the dynamic JSS problem than the other combination schemes investigated. In addition, the different combination schemes result in significantly different interactions between the members of the ensembles. Finally, the analysis based on the measures shows that the behaviours of the evolved ensembles are significantly affected by the combination schemes. Weighted majority voting has bias towards single members of the ensembles. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/


Author(s):  
Sascha Meyen ◽  
Dorothee M. B. Sigg ◽  
Ulrike von Luxburg ◽  
Volker H. Franz

Abstract Background It has repeatedly been reported that, when making decisions under uncertainty, groups outperform individuals. Real groups are often replaced by simulated groups: Instead of performing an actual group discussion, individual responses are aggregated by a numerical computation. While studies have typically used unweighted majority voting (MV) for this aggregation, the theoretically optimal method is confidence weighted majority voting (CWMV)—if independent and accurate confidence ratings from the individual group members are available. To determine which simulations (MV vs. CWMV) reflect real group processes better, we applied formal cognitive modeling and compared simulated group responses to real group responses. Results Simulated group decisions based on CWMV matched the accuracy of real group decisions, while simulated group decisions based on MV showed lower accuracy. CWMV predicted the confidence that groups put into their group decisions well. However, real groups treated individual votes to some extent more equally weighted than suggested by CWMV. Additionally, real groups tend to put lower confidence into their decisions compared to CWMV simulations. Conclusion Our results highlight the importance of taking individual confidences into account when simulating group decisions: We found that real groups can aggregate individual confidences in a way that matches statistical aggregations given by CWMV to some extent. This implies that research using simulated group decisions should use CWMV instead of MV as a benchmark to compare real groups to.


Sign in / Sign up

Export Citation Format

Share Document