doob decomposition
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
pp. 313-343
Author(s):  
James Davidson

This chapter summarizes the essentials of sequential conditioning and martingale theory. After a review with examples of the basic properties of martingales and semi‐martingales, including the Doob decomposition, the upcrossing inequality and martingale convergence are studied and also the role of the conditional variances in establishing convergence. The important martingale inequalities of Kolmogorov, Doob, Burkholder, and Azuma are proved.





2004 ◽  
Vol 47 (3) ◽  
pp. 633-657 ◽  
Author(s):  
Masato Kikuchi

AbstractWe establish various martingale inequalities in a rearrangement-invariant (RI) Banach function space. If $X$ is an RI space that is not too small, we associate with it RI spaces $\mathcal{H}_p(X)$ $(1\leq p\lt\infty)$ and $K(X)$, and discuss martingale inequalities in these spaces. One of our results is as follows. Let $1\leq p\lt\infty$, let $f=(f_n)$ be an $L_p$-bounded martingale, and let $|f|^p=g+h$ be the Doob decomposition of the submartingale $|f|^p=(|f_n|^p)$ into a martingale $g=(g_n)$ and a predictable non-decreasing process $h=(h_n)$ with $h_0=0$. Then, in the case where $1\ltp\lt\infty$, we obtain the inequalities$$ \|h_{\infty}^{1/p}\|_X\leq2\|f_{\infty}\|_{\mathcal{H}_p(X)}\quad\text{and}\quad \Big\|\sup_n|g_n|^{1/p}\Big\|_X\leq4\|f_{\infty}\|_{\mathcal{H}_p(X)}, $$and, in the case where $p=1$, we obtain the inequalities$$ \|h_{\infty}\|_X\leq\sup_{n\in\mathbb{Z}_{+}}\|f_n\|_{K(X)}\quad\text{and}\quad \sup_{n\in\mathbb{Z}_{+}}\|g_n\|_X\leq2\sup_{n\in\mathbb{Z}_{+}}\|f_n\|_{K(X)}. $$For some specific choices of $X$, we can give explicit expressions for $\mathcal{H}_p(X)$ and $K(X)$. For example, $\mathcal{H}_1(L_1)=L\log L$, $\mathcal{H}_p(L_{p,\infty})=L_{p,1}$, and so on. Furthermore, if the Boyd indices of $X$ satisfy $0\lt\alpha_{X}\leq\beta_{X}\lt1/p$ (respectively, $0\lt\alpha_{X}$), then $\mathcal{H}_p(X)=X$ (respectively, $K(X)=X$). In any case, $\mathcal{H}_p(X)$ is embedded in $K(X)$, and $K(X)$ is embedded in $X$.AMS 2000 Mathematics subject classification: Primary 60G42; 60G46. Secondary 46E30



Sign in / Sign up

Export Citation Format

Share Document