rearrangement invariant function spaces
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2018 ◽  
Vol 61 (3) ◽  
pp. 879-890
Author(s):  
Santiago Boza ◽  
Javier Soria

AbstractWe study several questions about the weak-type boundedness of the Fourier transform ℱ on rearrangement invariant spaces. In particular, we characterize the action of ℱ as a bounded operator from the minimal Lorentz space Λ(X) into the Marcinkiewicz maximal space M(X), both associated with a rearrangement invariant space X. Finally, we also prove some results establishing that the weak-type boundedness of ℱ, in certain weighted Lorentz spaces, is equivalent to the corresponding strong-type estimates.



2006 ◽  
Vol 203 (1) ◽  
pp. 256-318 ◽  
Author(s):  
Guillermo P. Curbera ◽  
José García-Cuerva ◽  
José María Martell ◽  
Carlos Pérez


2004 ◽  
Vol 47 (3) ◽  
pp. 633-657 ◽  
Author(s):  
Masato Kikuchi

AbstractWe establish various martingale inequalities in a rearrangement-invariant (RI) Banach function space. If $X$ is an RI space that is not too small, we associate with it RI spaces $\mathcal{H}_p(X)$ $(1\leq p\lt\infty)$ and $K(X)$, and discuss martingale inequalities in these spaces. One of our results is as follows. Let $1\leq p\lt\infty$, let $f=(f_n)$ be an $L_p$-bounded martingale, and let $|f|^p=g+h$ be the Doob decomposition of the submartingale $|f|^p=(|f_n|^p)$ into a martingale $g=(g_n)$ and a predictable non-decreasing process $h=(h_n)$ with $h_0=0$. Then, in the case where $1\ltp\lt\infty$, we obtain the inequalities$$ \|h_{\infty}^{1/p}\|_X\leq2\|f_{\infty}\|_{\mathcal{H}_p(X)}\quad\text{and}\quad \Big\|\sup_n|g_n|^{1/p}\Big\|_X\leq4\|f_{\infty}\|_{\mathcal{H}_p(X)}, $$and, in the case where $p=1$, we obtain the inequalities$$ \|h_{\infty}\|_X\leq\sup_{n\in\mathbb{Z}_{+}}\|f_n\|_{K(X)}\quad\text{and}\quad \sup_{n\in\mathbb{Z}_{+}}\|g_n\|_X\leq2\sup_{n\in\mathbb{Z}_{+}}\|f_n\|_{K(X)}. $$For some specific choices of $X$, we can give explicit expressions for $\mathcal{H}_p(X)$ and $K(X)$. For example, $\mathcal{H}_1(L_1)=L\log L$, $\mathcal{H}_p(L_{p,\infty})=L_{p,1}$, and so on. Furthermore, if the Boyd indices of $X$ satisfy $0\lt\alpha_{X}\leq\beta_{X}\lt1/p$ (respectively, $0\lt\alpha_{X}$), then $\mathcal{H}_p(X)=X$ (respectively, $K(X)=X$). In any case, $\mathcal{H}_p(X)$ is embedded in $K(X)$, and $K(X)$ is embedded in $X$.AMS 2000 Mathematics subject classification: Primary 60G42; 60G46. Secondary 46E30



2001 ◽  
Vol 25 (7) ◽  
pp. 451-465 ◽  
Author(s):  
Sergey V. Astashkin

The Rademacher series in rearrangement invariant function spaces “close” to the spaceL∞are considered. In terms of interpolation theory of operators, a correspondence between such spaces and spaces of coefficients generated by them is stated. It is proved that this correspondence is one-to-one. Some examples and applications are presented.



1999 ◽  
Vol 42 (3) ◽  
pp. 321-334
Author(s):  
Masato Kikuchi

AbstractWe shall study some connection between averaging operators and martingale inequalities in rearrangement invariant function spaces. In Section 2 the equivalence between Shimogaki’s theorem and some martingale inequalities will be established, and in Section 3 the equivalence between Boyd’s theorem andmartingale inequalities with change of probability measure will be established.



1999 ◽  
Vol 59 (2) ◽  
pp. 681-697 ◽  
Author(s):  
Manuel González ◽  
Raquel Gonzalo ◽  
Jesús Angel Jaramillo


Author(s):  
Beata Randrianantoanina

AbstractLet X be a (real or complex) rearrangement-invariant function space on Ω (where Ω = [0, 1] or Ω ⊆ N) whose norm is not proportional to the L2-norm. Let H be a separable Hilbert space. We characterize surjective isometries of X (H). We prove that if T is such an isometry then there exist Borel maps a: Ω → + K and σ: Ω → Ω and a strongly measurable operator map S of Ω into B (H) so that for almost all ω, S(ω) is a surjective isometry of H, and for any f ∈ X(H), T f(ω) = a(ω)S(ω)(f(σ(ω))) a.e. As a consequence we obtain a new proof of the characterization of surjective isometries in complex rearrangement-invariant function spaces.



Sign in / Sign up

Export Citation Format

Share Document