square sieve
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)



2008 ◽  
Vol 144 (4) ◽  
pp. 827-848 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Chantal David

AbstractLet ϕ be a Drinfeld module of rank 2 over the field of rational functions $F=\mathbb {F}_q(T)$, with $\mathrm {End}_{\bar {F}}(\phi ) = \mathbb {F}_q[T]$. Let K be a fixed imaginary quadratic field over F and d a positive integer. For each prime $\mathfrak {p}$ of good reduction for ϕ, let $\pi _{\mathfrak {p}}(\phi )$ be a root of the characteristic polynomial of the Frobenius endomorphism of ϕ over the finite field $\mathbb {F}_q[T] / \mathfrak {p}$. Let Πϕ(K;d) be the number of primes $\mathfrak {p}$ of degree d such that the field extension $F(\pi _{\mathfrak {p}}(\phi ))$ is the fixed imaginary quadratic field K. We present upper bounds for Πϕ(K;d) obtained by two different approaches, inspired by similar ones for elliptic curves. The first approach, inspired by the work of Serre, is to consider the image of Frobenius in a mixed Galois representation associated to K and to the Drinfeld module ϕ. The second approach, inspired by the work of Cojocaru, Fouvry and Murty, is based on an application of the square sieve. The bounds obtained with the first method are better, but depend on the fixed quadratic imaginary field K. In our application of the second approach, we improve the results of Cojocaru, Murty and Fouvry by considering projective Galois representations.





2005 ◽  
Vol 57 (6) ◽  
pp. 1155-1177 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Etienne Fouvry ◽  
M. Ram Murty

AbstractLet E be an elliptic curve defined over ℚ and without complex multiplication. Let K be a fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes p ≤ x for which ℚ(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and unconditionally we show that this number is We also prove that the number of imaginary quadratic fields K, with −disc K ≤ x and of the form K = ℚ(πp), is ≫E log log log x for x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.



1984 ◽  
Vol 266 (3) ◽  
pp. 251-259 ◽  
Author(s):  
D. R. Heath-Brown
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document