conformal holonomy
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2017 ◽  
Vol 290 (2) ◽  
pp. 403-436
Author(s):  
Thomas Leistner ◽  
Andree Lischewski
Keyword(s):  


2016 ◽  
Vol 285 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Andreas Čap ◽  
A. Gover ◽  
C. Graham ◽  
Matthias Hammerl
Keyword(s):  


2014 ◽  
Vol 55 (3) ◽  
pp. 032501 ◽  
Author(s):  
James A. Reid ◽  
Charles H.-T. Wang
Keyword(s):  


2014 ◽  
Vol 33 ◽  
pp. 4-43 ◽  
Author(s):  
Jesse Alt ◽  
Antonio J. Di Scala ◽  
Thomas Leistner


2012 ◽  
Vol 10 (5) ◽  
pp. 1710-1720 ◽  
Author(s):  
Jesse Alt


2011 ◽  
Vol 285 (2-3) ◽  
pp. 150-163 ◽  
Author(s):  
Stuart Armstrong ◽  
Felipe Leitner
Keyword(s):  






2009 ◽  
Vol 20 (10) ◽  
pp. 1263-1287 ◽  
Author(s):  
A. ROD GOVER ◽  
F. LEITNER

Given any two Einstein (pseudo-)metrics, with scalar curvatures suitably related, we give an explicit construction of a Poincaré–Einstein (pseudo-)metric with conformal infinity the conformal class of the product of the initial metrics. We show that these metrics are equivalent to ambient metrics for the given conformal structure. The ambient metrics have holonomy that agrees with the conformal holonomy. In the generic case the ambient metric arises directly as a product of the metric cones over the original Einstein spaces. In general the conformal infinity of the Poincaré metric we construct is not Einstein, and so this describes a class of non-conformally Einstein metrics for which the (Fefferman–Graham) obstruction tensor vanishes.



Sign in / Sign up

Export Citation Format

Share Document