conformal structure
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 21 (2) ◽  
pp. 140
Author(s):  
Teguh Praludi ◽  
Yana Taryana ◽  
Ken Paramayudha ◽  
Budi Prawara ◽  
Yusnita Rahayu ◽  
...  

This paper presents the design, simulation, realization and analysis of flexible microstrip patch antenna for S-band applications. The proposed design also adopts the conformal structure by utilizing flexible substrate. Conformal or flexible structure allows the antenna to fit with any specified shape as desired. The antenna patch dimensions is 43 mm × 25 mm without SMA connector. The patch is etched on the flexible dielectric substrate, pyralux FR 9111, with a relative dielectric constant of εr = 3 and the thickness of substrate, h = 0.025 mm. The antenna is designed to resonate at 3.2 GHz. The return loss (RL) of the simulation is -35.80 dB at the center frequency of 3.2 GHz. The fabricated antenna prototype was measured at different bending angles scenarios including 0º, 30º, 60º, and 90º. The measurement of antenna prototype shows that the center frequency is shifted to the higher frequency of 3.29 GHz, compared to the simulation result. Among these scenarios, measurement at bending angle of 90º gives the best performance with RL = - 31.38 dB at 3.29 GHz, the bandwidth is 80 MHz, and the impedance ZA = 48.36 + j2.04 Ω. Despite a slight differences from simulation results, the designed antenna still performs well as expected.


Author(s):  
S. Berjawi ◽  
E. V. Ferapontov ◽  
B. S. Kruglikov ◽  
V. S. Novikov

AbstractEinstein–Weyl geometry is a triple $$({\mathbb {D}},g,\omega )$$ ( D , g , ω ) where $${\mathbb {D}}$$ D is a symmetric connection, [g] is a conformal structure and $$\omega $$ ω is a covector such that $$\bullet $$ ∙ connection $${\mathbb {D}}$$ D preserves the conformal class [g], that is, $${\mathbb {D}}g=\omega g$$ D g = ω g ; $$\bullet $$ ∙ trace-free part of the symmetrised Ricci tensor of $${\mathbb {D}}$$ D vanishes. Three-dimensional Einstein–Weyl structures naturally arise on solutions of second-order dispersionless integrable PDEs in 3D. In this context, [g] coincides with the characteristic conformal structure and is therefore uniquely determined by the equation. On the contrary, covector $$\omega $$ ω is a somewhat more mysterious object, recovered from the Einstein–Weyl conditions. We demonstrate that, for generic second-order PDEs (for instance, for all equations not of Monge–Ampère type), the covector $$\omega $$ ω is also expressible in terms of the equation, thus providing an efficient ‘dispersionless integrability test’. The knowledge of g and $$\omega $$ ω provides a dispersionless Lax pair by an explicit formula which is apparently new. Some partial classification results of PDEs with Einstein–Weyl characteristic conformal structure are obtained. A rigidity conjecture is proposed according to which for any generic second-order PDE with Einstein–Weyl property, all dependence on the 1-jet variables can be eliminated via a suitable contact transformation.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Ram Brustein ◽  
Yoav Zigdon

Abstract We discuss interacting, closed, bosonic and superstrings in thermal equilibrium at temperatures close to the Hagedorn temperature in flat space. We calculate S-matrix elements of the strings at the Hagedorn temperature and use them to construct a low-energy effective action for interacting strings near the Hagedorn temperature. We show, in particular, that the four-point amplitude of massless winding modes leads to a positive quartic interaction. Furthermore, the effective field theory has a generalized conformal structure, namely, it is conformally invariant when the temperature is assigned an appropriate scaling dimension. Then, we show that the equations of motion resulting from the effective action possess a winding-mode-condensate background solution above the Hagedorn temperature and present a worldsheet conformal field theory, similar to a Sine-Gordon theory, that corresponds to this solution. We find that the Hagedorn phase transition in our setup is second order, in contrast to a first-order transition that was found previously in different setups.


2021 ◽  
Vol 179 (3-4) ◽  
pp. 1183-1211
Author(s):  
Jason Miller ◽  
Scott Sheffield

AbstractPrevious works in this series have shown that an instance of a $$\sqrt{8/3}$$ 8 / 3 -Liouville quantum gravity (LQG) sphere has a well-defined distance function, and that the resulting metric measure space (mm-space) agrees in law with the Brownian map (TBM). In this work, we show that given just the mm-space structure, one can a.s. recover the LQG sphere. This implies that there is a canonical way to parameterize an instance of TBM by the Euclidean sphere (up to Möbius transformation). In other words, an instance of TBM has a canonical conformal structure. The conclusion is that TBM and the $$\sqrt{8/3}$$ 8 / 3 -LQG sphere are equivalent. They ultimately encode the same structure (a topological sphere with a measure, a metric, and a conformal structure) and have the same law. From this point of view, the fact that the conformal structure a.s. determines the metric and vice-versa can be understood as a property of this unified law. The results of this work also imply that the analogous facts hold for Brownian and $$\sqrt{8/3}$$ 8 / 3 -LQG surfaces with other topologies.


Author(s):  
Joel Fine ◽  
Yannick Herfray

Conformal geodesics are distinguished curves on a conformal manifold, loosely analogous to geodesics of Riemannian geometry. One definition of them is as solutions to a third-order differential equation determined by the conformal structure. There is an alternative description via the tractor calculus. In this article, we give a third description using ideas from holography. A conformal [Formula: see text]-manifold [Formula: see text] can be seen (formally at least) as the asymptotic boundary of a Poincaré–Einstein [Formula: see text]-manifold [Formula: see text]. We show that any curve [Formula: see text] in [Formula: see text] has a uniquely determined extension to a surface [Formula: see text] in [Formula: see text], which we call the ambient surface of [Formula: see text]. This surface meets the boundary [Formula: see text] in right angles along [Formula: see text] and is singled out by the requirement that it be a critical point of renormalized area. The conformal geometry of [Formula: see text] is encoded in the Riemannian geometry of [Formula: see text]. In particular, [Formula: see text] is a conformal geodesic precisely when [Formula: see text] is asymptotically totally geodesic, i.e. its second fundamental form vanishes to one order higher than expected. We also relate this construction to tractors and the ambient metric construction of Fefferman and Graham. In the [Formula: see text]-dimensional ambient manifold, the ambient surface is a graph over the bundle of scales. The tractor calculus then identifies with the usual tensor calculus along this surface. This gives an alternative compact proof of our holographic characterization of conformal geodesics.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Claudio Corianò ◽  
Luigi Delle Rose ◽  
Kostas Skenderis

AbstractTheories with generalised conformal structure contain a dimensionful parameter, which appears as an overall multiplicative factor in the action. Examples of such theories are gauge theories coupled to massless scalars and fermions with Yukawa interactions and quartic couplings for the scalars in spacetime dimensions other than 4. Many properties of such theories are similar to that of conformal field theories (CFT), and in particular their 2-point functions take the same form as in CFT but with the normalisation constant now replaced by a function of the effective dimensionless coupling g constructed from the dimensionful parameter and the distance separating the two operators. Such theories appear in holographic dualities involving non-conformal branes and this behaviour of the correlators has already been observed at strong coupling. Here we present a perturbative computation of the two-point function of the energy-momentum tensor to two loops in dimensions $$d= 3, 5$$ d = 3 , 5 , confirming the expected structure and determining the corresponding functions of g to this order, including the effects of renormalisation. We also discuss the $$\hbox {d}=4$$ d = 4 case for comparison. The results for $$d=3$$ d = 3 are relevant for holographic cosmology, and in this case we also study the effect of a $$\Phi ^6$$ Φ 6 coupling, which while marginal in the usual sense it is irrelevant from the perspective of the generalised conformal structure. Indeed, the effect of such coupling in the 2-point function is washed out in the IR but it modifies the UV.


Author(s):  
David M. J. Calderbank ◽  
Boris Kruglikov

AbstractWe prove that the existence of a dispersionless Lax pair with spectral parameter for a nondegenerate hyperbolic second order partial differential equation (PDE) is equivalent to the canonical conformal structure defined by the symbol being Einstein–Weyl on any solution in 3D, and self-dual on any solution in 4D. The first main ingredient in the proof is a characteristic property for dispersionless Lax pairs. The second is the projective behaviour of the Lax pair with respect to the spectral parameter. Both are established for nondegenerate determined systems of PDEs of any order. Thus our main result applies more generally to any such PDE system whose characteristic variety is a quadric hypersurface.


2020 ◽  
Vol 50 (11) ◽  
pp. 1418-1425
Author(s):  
Neil Dewar ◽  
James Read

AbstractIt is well-known that the conformal structure of a relativistic spacetime is of profound physical and conceptual interest. In this note, we consider the analogous structure for Newtonian theories. We show that the Newtonian Weyl tensor is an invariant of this structure.


Author(s):  
E V Ferapontov ◽  
B Kruglikov ◽  
V Novikov

Abstract We prove that integrability of a dispersionless Hirota-type equation implies the symplectic Monge–Ampère property in any dimension $\geq 4$. In 4D, this yields a complete classification of integrable dispersionless partial differential equations (PDEs) of Hirota type through a list of heavenly type equations arising in self-dual gravity. As a by-product of our approach, we derive an involutive system of relations characterizing symplectic Monge–Ampère equations in any dimension. Moreover, we demonstrate that in 4D the requirement of integrability is equivalent to self-duality of the conformal structure defined by the characteristic variety of the equation on every solution, which is in turn equivalent to the existence of a dispersionless Lax pair. We also give a criterion of linearizability of a Hirota-type equation via flatness of the corresponding conformal structure and study symmetry properties of integrable equations.


Sign in / Sign up

Export Citation Format

Share Document