generalized fading model
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Arafat Al-Dweik ◽  
Adel S. A. Alqahtani ◽  
Emad Alsusa

<div>This work presents a performance analysis on cooperative non-orthogonal multiple accesses (C-NOMA) when assisted with energy harvesting enabled unmanned aerial vehicle (UAV) decode-and-forward (DF) relaying. In particular, two scenarios are considered, an outdoor-indoor one, where the NOMA signal propagates through outdoor-to-indoor, and a conventional outdoor scenario where the channel gains follow a k-u generalized fading model. The objectives of this work is to analyze the downlink performance of this C-NOMA system and derive closed-form expressions for the outage probability (OP), ergodic capacity (EC), throughput and energy efficiency (EE) for the users assuming imperfect successive interference cancellation (SIC). In particular, the OP approach considers the individual users’ rate where it is required to satisfy certain quality of service (QoS) requirements. The results provide insights into the considered performance metrics relative to key parameters such as power allocation, power splitting factor, fading parameters, and residual interference. Extensive simulations results are presented to validate the accuracy of the derived expressions.</div>


2021 ◽  
Author(s):  
Arafat Al-Dweik ◽  
Adel S. A. Alqahtani ◽  
Emad Alsusa

<div>This work presents a performance analysis on cooperative non-orthogonal multiple accesses (C-NOMA) when assisted with energy harvesting enabled unmanned aerial vehicle (UAV) decode-and-forward (DF) relaying. In particular, two scenarios are considered, an outdoor-indoor one, where the NOMA signal propagates through outdoor-to-indoor, and a conventional outdoor scenario where the channel gains follow a k-u generalized fading model. The objectives of this work is to analyze the downlink performance of this C-NOMA system and derive closed-form expressions for the outage probability (OP), ergodic capacity (EC), throughput and energy efficiency (EE) for the users assuming imperfect successive interference cancellation (SIC). In particular, the OP approach considers the individual users’ rate where it is required to satisfy certain quality of service (QoS) requirements. The results provide insights into the considered performance metrics relative to key parameters such as power allocation, power splitting factor, fading parameters, and residual interference. Extensive simulations results are presented to validate the accuracy of the derived expressions.</div>


Sign in / Sign up

Export Citation Format

Share Document