alloplasmic male sterility
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 22 (24) ◽  
pp. 13230
Author(s):  
Li Chen ◽  
Wenjing Ren ◽  
Bin Zhang ◽  
Wendi Chen ◽  
Zhiyuan Fang ◽  
...  

B. oleracea Ogura CMS is an alloplasmic male-sterile line introduced from radish by interspecific hybridization and protoplast fusion. The introduction of alien cytoplasm resulted in many undesirable traits, which affected the yield of hybrids. Therefore, it is necessary to identify the composition and reduce the content of alien cytoplasm in B. oleracea Ogura CMS. In the present study, we sequenced, assembled, and compared the organelle genomes of Ogura CMS cabbage and its maintainer line. The chloroplast genome of Ogura-type cabbage was completely derived from normal-type cabbage, whereas the mitochondrial genome was recombined from normal-type cabbage and Ogura-type radish. Nine unique regions derived from radish were identified in the mitochondrial genome of Ogura-type cabbage, and the total length of these nine regions was 35,618 bp, accounting for 13.84% of the mitochondrial genome. Using 32 alloplasmic markers designed according to the sequences of these nine regions, one novel sterile source with less alien cytoplasm was discovered among 305 materials and named Bel CMS. The size of the alien cytoplasm in Bel CMS was 21,587 bp, accounting for 8.93% of its mtDNA, which was much less than that in Ogura CMS. Most importantly, the sterility gene orf138 was replaced by orf112, which had a 78-bp deletion, in Bel CMS. Interestingly, Bel CMS cabbage also maintained 100% sterility, although orf112 had 26 fewer amino acids than orf138. Field phenotypic observation showed that Bel CMS was an excellent sterile source with stable 100% sterility and no withered buds at the early flowering stage, which could replace Ogura CMS in cabbage heterosis utilization.


2021 ◽  
Author(s):  
Shifei Sang ◽  
Hongtao Cheng ◽  
Mengyu Hao ◽  
Bingli Ding ◽  
Desheng Mei ◽  
...  

2014 ◽  
Vol 133 (6) ◽  
pp. 742-747 ◽  
Author(s):  
Zhao Liu ◽  
Xiwen Cai ◽  
Gerald J. Seiler ◽  
Chao-Chien Jan

Sign in / Sign up

Export Citation Format

Share Document