large deviation problem
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2018 ◽  
Vol 37 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Nadezhda Gribkova

CRAMÉR TYPE LARGE DEVIATIONS FOR TRIMMED L-STATISTICSIn this paper, we propose a new approach to the investigationof asymptotic properties of trimmed L-statistics and we apply it to the Cramér type large deviation problem. Our results can be compared with those in Callaert et al. 1982 – the first and, as far as we know, the single article where some results on probabilities of large deviations for the trimmed L-statistics were obtained, but under some strict and unnatural conditions. Our approach is to approximate the trimmed L-statistic by a non-trimmed L-statistic with smooth weight function based onWinsorized random variables. Using this method, we establish the Cramér type large deviation results for the trimmed L-statistics under quite mild and natural conditions.


2016 ◽  
Vol 26 (2) ◽  
pp. 301-320 ◽  
Author(s):  
YUFEI ZHAO

We study the lower tail large deviation problem for subgraph counts in a random graph. Let XH denote the number of copies of H in an Erdős–Rényi random graph $\mathcal{G}(n,p)$. We are interested in estimating the lower tail probability $\mathbb{P}(X_H \le (1-\delta) \mathbb{E} X_H)$ for fixed 0 < δ < 1.Thanks to the results of Chatterjee, Dembo and Varadhan, this large deviation problem has been reduced to a natural variational problem over graphons, at least for p ≥ n−αH (and conjecturally for a larger range of p). We study this variational problem and provide a partial characterization of the so-called ‘replica symmetric’ phase. Informally, our main result says that for every H, and 0 < δ < δH for some δH > 0, as p → 0 slowly, the main contribution to the lower tail probability comes from Erdős–Rényi random graphs with a uniformly tilted edge density. On the other hand, this is false for non-bipartite H and δ close to 1.


Sign in / Sign up

Export Citation Format

Share Document