regression test selection
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Walter Cazzola ◽  
Sudipto Ghosh ◽  
Mohammed Al-Refai ◽  
Gabriele Maurina

AbstractRegression test selection (RTS) approaches reduce the cost of regression testing of evolving software systems. Existing RTS approaches based on UML models use behavioral diagrams or a combination of structural and behavioral diagrams. However, in practice, behavioral diagrams are incomplete or not used. In previous work, we proposed a fuzzy logic based RTS approach called FLiRTS that uses UML sequence and activity diagrams. In this work, we introduce FLiRTS 2, which drops the need for behavioral diagrams and relies on system models that only use UML class diagrams, which are the most widely used UML diagrams in practice. FLiRTS 2 addresses the unavailability of behavioral diagrams by classifying test cases using fuzzy logic after analyzing the information commonly provided in class diagrams. We evaluated FLiRTS 2 on UML class diagrams extracted from 3331 revisions of 13 open-source software systems, and compared the results with those of code-based dynamic (Ekstazi) and static (STARTS) RTS approaches. The average test suite reduction using FLiRTS 2 was 82.06%. The average safety violations of FLiRTS 2 with respect to Ekstazi and STARTS were 18.88% and 16.53%, respectively. FLiRTS 2 selected on average about 82% of the test cases that were selected by Ekstazi and STARTS. The average precision violations of FLiRTS 2 with respect to Ekstazi and STARTS were 13.27% and 9.01%, respectively. The average mutation score of the full test suites was 18.90%; the standard deviation of the reduced test suites from the average deviation of the mutation score for each subject was 1.78% for FLiRTS 2, 1.11% for Ekstazi, and 1.43% for STARTS. Our experiment demonstrated that the performance of FLiRTS 2 is close to the state-of-art tools for code-based RTS but requires less information and performs the selection in less time.


2021 ◽  
Vol 7 (1) ◽  
pp. 59
Author(s):  
Asri Maspupah ◽  
Akhmad Bakhrun

Regression testing as an essential activity in software development that has changed requirements. In practice, regression testing requires a lot of time so that an optimal strategy is needed. One approach that can be used to speed up execution time is the Regression Test Selection (RTS) approach. Currently, practitioners and academics have started to think about developing tools to optimize the process of implementing regression testing. Among them, STARTS and Ekstazi are the most popular regression testing tools among academics in running test case selection algorithms. This article discusses the comparison of the capabilities of the STARTS and Ekstazi features by using feature parameter evaluation. Both tools were tested with the same input data in the form of System Under Test (SUT) and test cases. The parameters used in the tool comparisons are platform technology, test case selection, functionality, usability and performance efficiency, the advantages, and disadvantages of the tool. he results of the trial show the differences and similarities between the features of STARTS and Ekstazi, so that it can be used by practitioners to take advantage of tools in the implementation of regression testing that suit their needs. In addition, experimental results show that the use of Ekstazi is more precise in sorting out important test cases and is more efficient, when compared to STARTS and regression testing with retest all.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Ani - Rahmani

Software testing (testing) is a crucial stage in software development. The success of the testing process will ensure the quality of the software. In the regression testing process, one issue is that not all test cases (retest all) in the test suite need to be executed. Retest all will consume massive resources, as well as a long time. Regression testing techniques seek to find ways to reduce test execution time. One of the regression testing techniques is test case selection, also known as regression test selection (RTS). This paper describes a study on babelRTS, an RTS algorithm, to see its effectiveness. Effectiveness is measured by comparing the execution time of the execution retest all and babelRTS. Experiments were carried out on five software under tests (SUT) that had some faults. Test cases are prepared by designing for each SUT. The results showed a reduction in time so that the effectiveness reached a maximum of 32%, and average of 23% .


Sign in / Sign up

Export Citation Format

Share Document