genetic improvement
Recently Published Documents


TOTAL DOCUMENTS

2230
(FIVE YEARS 592)

H-INDEX

71
(FIVE YEARS 10)

2022 ◽  
Vol 277 ◽  
pp. 108406
Author(s):  
Chaojun Peng ◽  
Zaicheng Zhang ◽  
Yan Li ◽  
Yu Zhang ◽  
Haibin Dong ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhen Liang ◽  
Yuqing Wu ◽  
Lingling Ma ◽  
Yingjie Guo ◽  
Yidong Ran

The genome editing toolbox based on CRISPR/Cas9 has brought revolutionary changes to agricultural and plant scientific research. With the development of stable genetic transformation protocols, a highly efficient genome editing system for foxtail millet (Setaria italica) is required. In the present study, we use the CRISPR/Cas9 single- and multi-gene knockout system to target the SiFMBP, SiDof4, SiBADH2, SiGBSS1, and SiIPK1 genes in the foxtail millet protoplasts to screen out highly efficient targeted sgRNAs. Then, we recovered homozygous mutant plants with most of the targeted genes through an Agrobacterium-mediated genetic transformation of foxtail millet. The mutagenesis frequency in the T0 generation was as high as 100%, and it was passed stably on to the next generation. After screening these targeted edited events, we did not detect off-target mutations at potential sites. Based on this system, we have achieved base editing successfully using two base editors (CBE and ABE) to target the SiALS and SiACC genes of foxtail millet. By utilizing CBE to target the SiALS gene, we created a homozygous herbicide-tolerant mutant plant. The current system could enhance the analysis of functional genomics and genetic improvement of foxtail millet.


2022 ◽  
Author(s):  
Irene S. Breider ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
Steve Thorn ◽  
Manish K. Pandey ◽  
...  

Abstract Some of the most economically important traits in plant breeding show highly polygenic inheritance. Genetic variation is a key determinant of the rates of genetic improvement in selective breeding programs. Rapid progress in genetic improvement comes at the cost of a rapid loss of genetic variation. Germplasm available through expired Plant Variety Protection (exPVP) lines is a potential resource of variation previously lost in elite breeding programs. Introgression for polygenic traits is challenging, as many genes have a small effect on the trait of interest. Here we propose a way to overcome these challenges with a multi-part pre-breeding program that has feedback pathways to optimise recurrent genomic selection. The multi-part breeding program consists of three components, namely a bridging component, population improvement, and product development. Parameters influencing the multi-part program were optimised with the use of a grid search. Haploblock effect and origin were investigated. Results showed that the introgression of exPVP germplasm using an optimised multi-part breeding strategy resulted in 1.53 times higher genetic gain compared to a two-part breeding program. Higher gain was achieved through reducing the performance gap between exPVP and elite germplasm and breaking down linkage drag. Both first and subsequent introgression events showed to be successful. In conclusion, the multi-part breeding strategy has a potential to improve long-term genetic gain for polygenic traits and therefore, potential to contribute to global food security.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Gerardo Alves Fernandes Júnior ◽  
Delvan Alves Silva ◽  
Lucio Flavio Macedo Mota ◽  
Thaise Pinto de Melo ◽  
Larissa Fernanda Simielli Fonseca ◽  
...  

Increasing productivity through continued animal genetic improvement is a crucial part of implementing sustainable livestock intensification programs. In Zebu cattle, the lack of sexual precocity is one of the main obstacles to improving beef production efficiency. Puberty-related traits are complex, but large-scale data sets from different “omics” have provided information on specific genes and biological processes with major effects on the expression of such traits, which can greatly increase animal genetic evaluation. In addition, genetic parameter estimates and genomic predictions involving sexual precocity indicator traits and productive, reproductive, and feed-efficiency related traits highlighted the feasibility and importance of direct selection for anticipating heifer reproductive life. Indeed, the case study of selection for sexual precocity in Nellore breeding programs presented here show that, in 12 years of selection for female early precocity and improved management practices, the phenotypic means of age at first calving showed a strong decreasing trend, changing from nearly 34 to less than 28 months, with a genetic trend of almost −2 days/year. In this period, the percentage of early pregnancy in the herds changed from around 10% to more than 60%, showing that the genetic improvement of heifer’s sexual precocity allows optimizing the productive cycle by reducing the number of unproductive animals in the herd. It has a direct impact on sustainability by better use of resources. Genomic selection breeding programs accounting for genotype by environment interaction represent promising tools for accelerating genetic progress for sexual precocity in tropical beef cattle.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhao Zheng ◽  
Nannan Zhang ◽  
Zhenghui Huang ◽  
Qiaoying Zeng ◽  
Yonghong Huang ◽  
...  

AbstractPlatostoma palustre (Blume) A.J.Paton is an annual herbaceous persistent plant of the Labiatae family. However, there is a lack of genomic data for this plant, which severely restricts its genetic improvement. In this study, we performed genome survey sequencing of P. palustre and developed simple sequence repeat (SSR) markers based on the resulting sequence. K-mer analysis revealed that the assembled genome size was approximately 1.21 Gb. A total of 15,498 SSR motifs were identified and characterized in this study; among them, dinucleotide, and hexanucleotide repeats had the highest and lowest, respectively. Among the dinucleotide repeat motifs, AT/TA repeat motifs were the most abundant, and GC/CG repeat motifs were rather rare, accounting for 44.28% and 0.63%, respectively. Genetic similarity coefficient analysis by the UPMGA methods clustered 12 clones, of P. palustre and related species into two subgroups. These results provide helpful information for further research on P. palustre resources and variety improvements.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meki S. Muktar ◽  
Ermias Habte ◽  
Abel Teshome ◽  
Yilikal Assefa ◽  
Alemayehu T. Negawo ◽  
...  

Napier grass is the most important perennial tropical grass native to Sub-Saharan Africa and widely grown in tropical and subtropical regions around the world, primarily as a forage crop for animal feed, but with potential as an energy crop and in a wide range of other areas. Genomic resources have recently been developed for Napier grass that need to be deployed for genetic improvement and molecular dissection of important agro-morphological and feed quality traits. From a diverse set of Napier grass genotypes assembled from two independent collections, a subset of 84 genotypes (although a small population size, the genotypes were selected to best represent the genetic diversity of the collections) were selected and evaluated for 2 years in dry (DS) and wet (WS) seasons under three soil moisture conditions: moderate water stress in DS (DS-MWS); severe water stress in DS (DS-SWS) and, under rainfed (RF) conditions in WS (WS-RF). Data for agro-morphological and feed quality traits, adjusted for the spatial heterogeneity in the experimental blocks, were collected over a 2-year period from 2018 to 2020. A total of 135,706 molecular markers were filtered, after removing markers with missing values >10% and a minor allele frequency (MAF) <5%, from the high-density genome-wide markers generated previously using the genotyping by sequencing (GBS) method of the DArTseq platform. A genome-wide association study (GWAS), using two different mixed linear model algorithms implemented in the GAPIT R package, identified more than 35 QTL regions and markers associated with agronomic, morphological, and water-use efficiency traits. QTL regions governing purple pigmentation and feed quality traits were also identified. The identified markers will be useful in the genetic improvement of Napier grass through the application of marker-assisted selection and for further characterization and map-based cloning of the QTLs.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Donald L. Rockwood ◽  
Dudley A. Huber ◽  
Mark A. Crawford ◽  
Phillip C. Rucks ◽  
Elizabeth Lamb ◽  
...  

Eucalyptus amplifolia and Corymbia torelliana genetic improvement has been conducted in the lower southeastern USA by UF and collaborators since 1980. The collective accomplishments in genetic resources and potential commercial uses are summarized. For example, fast-growing, freeze-resilient E. amplifolia seeds are provided by 1st and 2nd generation seedling seed orchards (SSO) and a 2nd generation clonal seed orchard (CSO), while C. torelliana seed are available from 1st and 2nd generation SSOs. Breeding values (BV) have been developed for guiding the deployment of improved genotypes. Collaborative genetic improvement of these species is ongoing, including testing E. amplifolia in 11 countries and development of hybrid clones. Short Rotation Woody Crop (SRWC) systems may increase productivity and extend uses beyond conventional mulchwood to products such as medium density fiberboard (MDF), biochar, and energywood, while other possible applications include honey production, windbreaks, dendroremediation, and carbon sequestration. C. torelliana may be paired with E. grandis in two-row windbreaks to maximum windbreak effectiveness and may sequester as much carbon as E. grandis.


2022 ◽  
Vol 11 (1) ◽  
pp. e11711124473
Author(s):  
Sarah Maria Hoppen ◽  
Marcela Abbado Neres ◽  
Derrick Moot

The lucerne productive and nutritional potential make it the most used forage legume worldwide. This wide use leads genetic improvement programs to increasingly select the main requirements for a given edaphoclimatic condition. However, in Brazil, the research on genetic improvement of lucerne has been limited over the years, which has hindered the production of this species and the domination of other legumes in animal production, as estilosantes and pigeon pea. This literature review aimed to present results from countries such as New Zealand and Australia that lead the world ranking, as weel as Argentina, in the cultivation of this crop and that can be used as showcase to understand the management of lucerne. From extensive bibliometry analyses in the period between 1963 and 2021, variables as persistence and phyllochron in these countries indicate that it is possible to produce lucerne with similar productivity, longevity and quality in Brazil. Nevertheless, to leverage this production, not only genetic improvement should be aimed, but also research and dissemination of knowledge on the ideal management of defoliation and, mainly, on the choice of the genotype and dormancy level to be cropped by the producer.


2022 ◽  
pp. 317-337
Author(s):  
D.N. Das ◽  
D. Paul ◽  
Sukanta Mondal

Sign in / Sign up

Export Citation Format

Share Document