strand center
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 1)

2019 ◽  
Vol 944 ◽  
pp. 770-777 ◽  
Author(s):  
Hai Bo Sun ◽  
Zheng Li ◽  
Lie Jun Li ◽  
Bao Hua Nie

A segmented 3-D coupled electromagnetic-thermal solute transportation model, aimed to better understand the macro-segregation formation in the strand during a popular continuous casting (CC) process, has been developed. Based on the model validation by industrial tests, the effect of M-EMS and F-EMS running parameters on the segregation distribution were subsequently carried out. It is shown that the simulated solute segregation profile in the W-shape along the casting thickness direction is in a good agreement with the measured profile. In the initial solidification shell with thickness in 0.020 m, the solute segregation degree changes from a positive value to a negative with the increasing distance from strand surface because of the washing effect induced by the impact flow from the nozzle side port and M-EMS. Here, the minimum degree of carbon segregation decreases from 0.976 to 0.875 with the increasing stirring current from 100A to 550A. As the stirring current of F-EMS decreases from 630A to 200A, the minimum segregation degree locating at 0.109 m distance from strand surface increases from 0.805 to 0.967. The carbon segregation degree at the strand center first decreases from 1.10 to the minimum value of 1.06 at the case of 350 A/4 Hz because of the concentration equilibrium for the local decreasing negative segregation induced by F-EMS, and then increases to 1.16 due to the local poor stirring.


Sign in / Sign up

Export Citation Format

Share Document