negative segregation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 262
Author(s):  
Tao Wang ◽  
Engang Wang ◽  
Yves Delannoy ◽  
Yves Fautrelle ◽  
Olga Budenkova

In the present work macrosegregation during solidification of a 2.45 ton steel ingot is simulated with a pure equiaxed model, which was tested previously via modeling of a benchmark experiment. While the columnar structure is not taken into account, a packed layer formed over inner walls of the mold at an early stage of solidification reproduces to some extent phenomena generally related to zones of columnar dendrites. Furthermore, it is demonstrated that interaction of free-floating equiaxed grains with ascending convective flow in the bulk liquid results in flow instabilities. This defines the irregular form of the negative segregation zone, the formation of which at the ingot bottom corresponds to experimental observation. Vertical channels reported in experimental measurements are reproduced in simulations. It is confirmed that intensification of ingot cooling may decrease segregation in the ingot.


2021 ◽  
pp. 339-339
Author(s):  
Jiajun Cui ◽  
Baokuan Li ◽  
Zhongqiu Liu ◽  
Fengsheng Qi ◽  
Beijiang Zhang

In order to investigate the solute distribution and freckles formation during directional solidification of superalloy ingots, a mathematical model with coupled solution of flow field, solute and temperature distribution was developed. Meanwhile, the reliability of this model was verified by the experimental and simulation results in relevant literatures. The three-dimensional directional solidification process of Ni-5.8wt%Al-15.2wt%Ta superalloy ingot was simulated, and then the dynamic growth of solute enrichment channels was demonstrated inside the ingot. Freckles formation under different cooling rates was studied, and the local segregation degree inside the ingot was obtained innovatively after solidification. The results show that the number of freckles formed at the top gradually decreases, and so do the degree of solute enrichment at these freckles with the increase of cooling rate. Moreover, the relative and volume-averaged segregation ratio is defined to describe the segregation degree inside the ingot. The span of relative segregation ratio for positive segregation is wider than that for negative segregation, but it accounts for less of total volume. As the cooling rate increases from 0.1 K/s to 1.0 K/s, the proportion of weak segregation (-20%~20%) increases significantly from 26% to 41%, so that the segregation degree is weakened in general. By analyzing the freckles formation and segregation degree inside the ingot, the numerical simulation results can provide a theoretical basis for optimizing the actual production process to suppress the freckle defects.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5379
Author(s):  
Qipeng Dong ◽  
Yanbin Yin ◽  
Zhen Zhu ◽  
Hiromi Nagaumi

Sedimentation of free-floating grains is the main origin of the negative centerline segregation in direct-chill casting of aluminum alloys. This study examines the motion and distribution of the floating grains during casting using experimental measurements and numerical modeling. The typical floating grains consisting of interior solute-lean coarse dendrites and periphery fine dendrites were experimentally observed only in the central region of the billet along with the negative segregation. The billet exhibits the strongest segregation at the center where the most floating grains are found. In simulations, under the action of the convection and the underlying forces, the grains floating in the transition region exhibit different motion behaviors, i.e., settling to the mushy zone, floating in the slurry zone, and moving upward to the liquid zone. However, most grains were transported to the central region of the billet and then were captured by the mushy zone and settled. Therefore, the floating grains comprise the largest share of the grain structure at the center of the billet, in agreement with the experimental results. Moreover, the simulation results indicate that the increased size of the grains promotes the sedimentation of the floating grains. These results are important for the future alleviation of negative centerline segregation in direct-chill casting of aluminum alloys.


2020 ◽  
Vol 993 ◽  
pp. 267-272
Author(s):  
Xiao Peng Li ◽  
Bao Li ◽  
Zhi Hua Gao ◽  
Tian Yang Guan ◽  
Ming Wei Gao ◽  
...  

The Φ730 / Φ340 mm hollow ingots of 2A14 aluminium alloy were produced by conventional and electromagnetic stirring (EMS) DC casting with extremely fine grain morphology. The results indicate that the metallographic microstructure of the alloy was more uniform and homogeneous in the EMS hollow ingot and the finer grain size was obtained. The average grain size dramatically decreased from 115 μm to 70 μm with applying EMS. The macrosegregation patterns of Cu element in EMS and conventional hollow ingots along the radial direction were both following the similar trend that positive segregation occurred in inner subsurface and middle section. Meanwhile negative segregation occurred in section offset to inside of centerline and outer surface. The extent of macrosegregation in EMS hollow ingot was severer than that in the conventional one. The mechanism of EMS was discussed to reveal its effect on the microstructure and macrosegregation.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 333 ◽  
Author(s):  
Qipeng Chen ◽  
Hongxiang Li ◽  
Houfa Shen

Grain structure and macrosegregation are two important aspects to assess the quality of direct chill (DC) cast billets, and the phenomena responsible for their formation are strongly interacted. Transient modeling of grain structure and macrosegregation during DC casting is achieved with a cellular automaton (CA)–finite element (FE) model, by which the macroscopic transport is coupled with microscopic relations for grain growth. In the CAFE model, a two-dimensional (2D) axisymmetric description is used for cylindrical geometry, and a Lagrangian representation is employed for both FE and CA calculations. This model is applied to the DC casting of two industrial scale Al-6.0 wt % Cu round billets with and without grain refiner. The grain structure and macrosegregation under thermal and solutal convection are studied. It is shown that the grain structure is fully equiaxed in the grain-refined billet, while a fine columnar grain region and a coarse columnar grain region are formed in the non-grain-refined billet. With the increasing casting speed, grains become finer and grow in a direction more perpendicular to the axis, and the positive segregation near the centerline becomes more pronounced. The increasing casting temperature makes grains coarser and the negative segregation near the surface more pronounced.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Wenjie Zhang ◽  
Sen Luo ◽  
Yao Chen ◽  
Weiling Wang ◽  
Miaoyong Zhu

Electromagnetic stirring in mold (M-EMS) has been widely used in continuous casting process to improve the solidification quality of the steel strand. In the present study, a 3D multi-physical-field mathematical model was developed to predict the macro transport phenomena in continuous casting mold with M-EMS using ANSYS commercial software, and was adopted to investigate the effect of current intensity (0, 150, 200, and 240 A) on the heat, momentum, and species transports in the billet continuous casting mold with a size of 160 mm × 160 mm. The results show that when the M-EMS is on, the horizontal swirling flow appears and shifts the high-temperature zone upward. With the increase of current intensity, two swirling flows form on the longitudinal section of continuous casting mold and become more intensive, and the flow velocity of the molten steel at the solidification front increases. Thus, the wash effects of the fluid flow on the initial solidified shell become intensive, resulting in a thinner shell thickness at the mold exit and a significant negative segregation of carbon at the billet subsurface.


2019 ◽  
Vol 944 ◽  
pp. 770-777 ◽  
Author(s):  
Hai Bo Sun ◽  
Zheng Li ◽  
Lie Jun Li ◽  
Bao Hua Nie

A segmented 3-D coupled electromagnetic-thermal solute transportation model, aimed to better understand the macro-segregation formation in the strand during a popular continuous casting (CC) process, has been developed. Based on the model validation by industrial tests, the effect of M-EMS and F-EMS running parameters on the segregation distribution were subsequently carried out. It is shown that the simulated solute segregation profile in the W-shape along the casting thickness direction is in a good agreement with the measured profile. In the initial solidification shell with thickness in 0.020 m, the solute segregation degree changes from a positive value to a negative with the increasing distance from strand surface because of the washing effect induced by the impact flow from the nozzle side port and M-EMS. Here, the minimum degree of carbon segregation decreases from 0.976 to 0.875 with the increasing stirring current from 100A to 550A. As the stirring current of F-EMS decreases from 630A to 200A, the minimum segregation degree locating at 0.109 m distance from strand surface increases from 0.805 to 0.967. The carbon segregation degree at the strand center first decreases from 1.10 to the minimum value of 1.06 at the case of 350 A/4 Hz because of the concentration equilibrium for the local decreasing negative segregation induced by F-EMS, and then increases to 1.16 due to the local poor stirring.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2398 ◽  
Author(s):  
Xiao Shi ◽  
Shengchao Duan ◽  
Wensheng Yang ◽  
Hanjie Guo ◽  
Jing Guo

The solidification and micro- and macro-segregation behaviors of as-cast INCONEL 718 (IN718) alloy at different temperatures under a slow cooling rate (5 °C/min) were investigated in this study. The results indicate that the solid-liquid interface grows into reticulation of hexagons during solidification. The variation trend of the solid fraction and transition rate of the solid phase with solidification time can be well characterized by the Boltzmann and Gaussian distribution, respectively. The order of segregation degree of negative segregation elements is: Fe > Cr > Al. Nb is the most principal positive segregation element, which is abundant in the long-term unsolidified remaining liquid. At the terminal stage of solidification, the increasing tendencies of the Nb and Mo contents in the liquid and the residual liquid density with decreasing temperature reverse due to the formation of the Laves phase. The freckles are most likely to form in the early stages of solidification, at which the liquid fraction is between 0.3 and 0.2, and the temperature range is about 1320 °C to 1310 °C. The information produced is expected to characterize the solidification and segregation behaviors of IN718 alloy when cooled at a slow rate characteristic of larger ingots typical of those required for industrial gas turbines and aircraft engines.


2018 ◽  
Vol 115 (6) ◽  
pp. 603
Author(s):  
Haibo Sun ◽  
Liejun Li ◽  
Xuexing Wu ◽  
Chengbin Liu

The subsurface negative segregation behavior and its effect on componential homogeneity of as-cast bloom within a section size of 320 mm × 425 mm under different stirrer currents were investigated with the aid of numerical simulation. To this end, plant trials were conducted based on a curved bloom caster in Shaoguan steel. The results show that the minimum subsurface negative segregation degree is decreased from 0.977 to 0.858 and its corresponding location moves from 16 mm to 11.9 mm distance from strand surface as the stirrer current is increased from 100 A to 600 A. The carbon content fluctuation range of rolled product cross-section first reduces and then increases because of the integrated effects of two factors: melt temperature at the mold exit center decreases (that is, undercooling is increased), whereas the local segregation degree increases with the increase in the stirrer current. As compared to the normal M-EMS parameters (600 A/2.5 Hz), the fluctuation range of carbon content at the cross-section of rolled product is reduced from 0.038 to 0.012 wt.% under the optimized M-EMS parameters of 200 A/2.5 Hz.


Sign in / Sign up

Export Citation Format

Share Document