double groupoids
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Henrique Bursztyn ◽  
Alejandro Cabrera ◽  
Matias del Hoyo

<p style='text-indent:20px;'>We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are related by differentiation and integration. We use these results to revisit Lie 2-bialgebras by means of Poisson double structures.</p>



Filomat ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1755-1769
Author(s):  
Sedat Temel ◽  
Tunşar Şahan ◽  
Osman Mucuk

The purpose of this paper is to obtain the notion of crossed module over group-groupoids considering split extensions and prove a categorical equivalence between these types of crossed modules and double group-groupoids. This equivalence enables us to produce various examples of double groupoids. We also prove that crossed modules over group-groupoids are equivalent to crossed squares.



2018 ◽  
Vol 42 (5) ◽  
pp. 2336-2347 ◽  
Author(s):  
Osman MUCUK ◽  
Serap DEMİR


2018 ◽  
Vol 10 (2) ◽  
pp. 217-250
Author(s):  
Santiago Cañez ◽  
Keyword(s):  


2011 ◽  
Vol 226 (4) ◽  
pp. 3309-3366 ◽  
Author(s):  
João Faria Martins ◽  
Roger Picken
Keyword(s):  


2010 ◽  
Vol 20 (4) ◽  
pp. 323-378 ◽  
Author(s):  
Antonio Martínez Cegarra ◽  
Benjamín A. Heredia ◽  
Josué Remedios
Keyword(s):  


2009 ◽  
Vol 213 (6) ◽  
pp. 1031-1045 ◽  
Author(s):  
Nicolás Andruskiewitsch ◽  
Sonia Natale
Keyword(s):  


2007 ◽  
Vol 14 (1) ◽  
pp. 1-18
Author(s):  
Juan Martín Mombelli ◽  
Sonia Natale


2006 ◽  
Vol 200 (2) ◽  
pp. 539-583 ◽  
Author(s):  
Nicolás Andruskiewitsch ◽  
Sonia Natale


Sign in / Sign up

Export Citation Format

Share Document