abel summation
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2591
Author(s):  
Xing Fu

Let (X,d,μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this article, the author develops a partial theory of paraproducts {Πj}j=13 defined via approximations of the identity with exponential decay (and integration 1), which are extensions of paraproducts defined via regular wavelets. Precisely, the author first obtains the boundedness of Π3 on Hardy spaces and then, via the methods of interpolation and the well-known T(1) theorem, establishes the endpoint estimates for {Πj}j=13. The main novelty of this paper is the application of the Abel summation formula to the establishment of some relations among the boundedness of {Πj}j=13, which has independent interests. It is also remarked that, throughout this article, μ is not assumed to satisfy the reverse doubling condition.



Author(s):  
Сергей Викторович Архипов

В статье рассматриваются многомерные строго устойчивые распределения. Как известно, функции плотности этих законов не представляются в явном виде за исключением известных законов Гаусса и Коши. Отправным пунктом для исследований являются характеристические функции. Имеется несколько различных форм их представления. В статье выбирается форма, предложенная в [1]. Применение обратного преобразования Фурье совместно с суммированием интегралов по Абелю позволило получить разложения функций плотности многомерных устойчивых распределений (см.[1], [12]). Основным результатом статьи являются представления этих функций с помощью рядов обобщенных функций над пространством Лизоркина. Они позволяют определить порядок убывания главного члена разложения на бесконечности для любого радиального направления. Кроме того, выведенные формулы дают возможность увидеть структуру формирования слагаемых в разложениях. В следствии приводятся примеры для различных случаев носителей спектральной меры многомерных устойчивых законов. The article discusses multidimensional strictly stable distributions. As is known, the density functions of these laws are not represented in closed form, with the exception of the well-known laws of Gauss and Cauchy. Characteristic functions are the starting point for research. There are several different forms of their presentation. The article chooses the form proposed in [1]. The application of the inverse Fourier transform together with the Abel summation of the integrals made it possible to obtain expansions of the density functions of multidimensional stable distributions (see [1], [12]). The main result of the article is the representation of these functions using series of generalized functions over the Lizorkin space. They make it possible to determine the order of decay of the principal term of the expansion at infinity for any radial direction. In addition, the derived formulas make it possible to see the structure of the formation of terms in expansions. In the corollary, examples are given for various cases of the support of the spectral measure of multidimensional stable laws.



2018 ◽  
Vol 14 (04) ◽  
pp. 1197-1210 ◽  
Author(s):  
Magdalena Bănescu ◽  
Dumitru Popa

In this paper, we prove a multiple Abel summation formula and give some applications of this formula. We use these evaluations in tandem with some recent results to obtain various asymptotic evaluations for multiple sums.









1948 ◽  
Vol os-19 (1) ◽  
pp. 59-64 ◽  
Author(s):  
F. V. ATKINSON


1930 ◽  
Vol s2-31 (1) ◽  
pp. 81-96 ◽  
Author(s):  
Mary L. Cartwright


Sign in / Sign up

Export Citation Format

Share Document