nonzero entry
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

10.37236/9849 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Preston Cranford ◽  
Anton Dochtermann ◽  
Evan Haithcock ◽  
Joshua Marsh ◽  
Suho Oh ◽  
...  

A well-known conjecture of Richard Stanley posits that the $h$-vector of the independence complex of a matroid is a pure ${\mathcal O}$-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified 'coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs.  We study the $h$-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of '$2$-weighted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the Möbius coinvariant (the last nonzero entry of the $h$-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially $2$-weighted forests gives rise to a pure multicomplex whose face count recovers the $h$-vector, establishing Stanley's conjecture for this class of matroids.  We also discuss how our constructions relate to a combinatorial strengthening of Stanley's Conjecture (due to Klee and Samper) for this class of matroids.


Author(s):  
Juanjuan Luo ◽  
Huadong Ma ◽  
Dongqing Zhou

Abstract Similarity matrix has a significant effect on the performance of the spectral clustering, and how to determine the neighborhood in the similarity matrix effectively is one of its main difficulties. In this paper, a “divide and conquer” strategy is proposed to model the similarity matrix construction task by adopting Multiobjective evolutionary algorithm (MOEA). The whole procedure is divided into two phases, phase I aims to determine the nonzero entries of the similarity matrix, and Phase II aims to determine the value of the nonzero entries of the similarity matrix. In phase I, the main contribution is that we model the task as a biobjective dynamic optimization problem, which optimizes the diversity and the similarity at the same time. It makes each individual determine one nonzero entry for each sample, and the encoding length decreases to O(N) in contrast with the non-ensemble multiobjective spectral clustering. In addition, a specific initialization operator and diversity preservation strategy are proposed during this phase. In phase II, three ensemble strategies are designed to determine the value of the nonzero value of the similarity matrix. Furthermore, this Pareto ensemble framework is extended to semi-supervised clustering by transforming the semi-supervised information to constraints. In contrast with the previous multiobjective evolutionary-based spectral clustering algorithms, the proposed Pareto ensemble-based framework makes a balance between time cost and the clustering accuracy, which is demonstrated in the experiments section.


Sign in / Sign up

Export Citation Format

Share Document