2019 ◽  
pp. 43-66
Author(s):  
Steven J. Osterlind

This chapter advances the historical context for quantification by describing the climate of the day—social, cultural, political, and intellectual—as fraught with disquieting influences. Forces leading to the French Revolution were building, and the colonists in America were fighting for secession from England. During this time, three important number theorems came into existence: the binomial theorem, the law of large numbers, and the central limit theorem. Each is described in easy-to-understand language. These are fundamental to how numbers operate in a probability circumstance. Pascal’s triangle is explained as a shortcut solving some binomial expansions, and Jacob Bernoulli’s Ars Conjectandi, which presents the study of measurement “error” for the first time, is discussed. In addition, the central limit theorem is explained in terms of its relevance to probability theory, and its utility today.


2019 ◽  
Vol 51 (03) ◽  
pp. 667-716
Author(s):  
Riccardo Passeggeri ◽  
Almut E. D. Veraart

AbstractIn this paper we introduce the multivariate Brownian semistationary (BSS) process and study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics. First, we present a central limit theorem for general multivariate Gaussian processes with stationary increments, which are not necessarily semimartingales. Then, we show weak laws of large numbers, central limit theorems, and feasible results for BSS processes. An explicit example based on the so-called gamma kernels is also provided.


Sign in / Sign up

Export Citation Format

Share Document