Monte Carlo Solutions of Differential Equations

2020 ◽  
Vol 26 (3) ◽  
pp. 193-203
Author(s):  
Shady Ahmed Nagy ◽  
Mohamed A. El-Beltagy ◽  
Mohamed Wafa

AbstractMonte Carlo (MC) simulation depends on pseudo-random numbers. The generation of these numbers is examined in connection with the Brownian motion. We present the low discrepancy sequence known as Halton sequence that generates different stochastic samples in an equally distributed form. This will increase the convergence and accuracy using the generated different samples in the Multilevel Monte Carlo method (MLMC). We compare algorithms by using a pseudo-random generator and a random generator depending on a Halton sequence. The computational cost for different stochastic differential equations increases in a standard MC technique. It will be highly reduced using a Halton sequence, especially in multiplicative stochastic differential equations.


Author(s):  
Sergey M. Ermakov ◽  
◽  
Maxim G. Smilovitskiy ◽  

Monte-Carlo approach towards solving Cauchy problem for large systems of linear differential equations is being proposed in this paper. Firstly, a quick overlook of previously obtained results from applying the approach towards Fredholm-type integral equations is being made. In the main part of the paper, a similar method is being applied towards a linear system of ODE. It is transformed into an equivalent system of Volterra-type integral equations, which relaxes certain limitations being present due to necessary conditions for convergence of majorant series. The following theorems are being stated. Theorem 1 provides necessary compliance conditions that need to be imposed upon initial and transition distributions of a required Markov chain, for which an equality between estimate’s expectation and a desirable vector product would hold. Theorem 2 formulates an equation that governs estimate’s variance, while theorem 3 states a form for Markov chain parameters that minimise the variance. Proofs are given, following the statements. A system of linear ODEs that describe a closed queue made up of ten virtual machines and seven virtual service hubs is then solved using the proposed approach. Solutions are being obtained both for a system with constant coefficients and time-variable coefficients, where breakdown intensity is dependent on t. Comparison is being made between Monte-Carlo and Rungge Kutta obtained solutions. The results can be found in corresponding tables.


2019 ◽  
Vol 25 (2) ◽  
pp. 97-120 ◽  
Author(s):  
Riu Naito ◽  
Toshihiro Yamada

Abstract This paper proposes a new third-order discretization algorithm for multidimensional Itô stochastic differential equations driven by Brownian motions. The scheme is constructed by the Euler–Maruyama scheme with a stochastic weight given by polynomials of Brownian motions, which is simply implemented by a Monte Carlo method. The method of Watanabe distributions on Wiener space is effectively applied in the computation of the polynomial weight of Brownian motions. Numerical examples are shown to confirm the accuracy of the scheme.


Sign in / Sign up

Export Citation Format

Share Document