Continuous Probability Distributions: Sums, the Normal Distribution, and the Central Limit Theorem; Bivariate Random Variables

Author(s):  
Antonina Ganicheva ◽  

The problem of estimating the number of summands of random variables for a total normal distribution law or a sample average with a normal distribution is investigated. The Central limit theorem allows us to solve many complex applied problems using the developed mathematical apparatus of the normal probability distribution. Otherwise, we would have to operate with convolutions of distributions that are explicitly calculated in rare cases. The purpose of this paper is to theoretically estimate the number of terms of the Central limit theorem necessary for the sum or sample average to have a normal probability distribution law. The article proves two theorems and two consequences of them. The method of characteristic functions is used to prove theorems. The first theorem States the conditions under which the average sample of independent terms will have a normal distribution law with a given accuracy. The corollary of the first theorem determines the normal distribution for the sum of independent random variables under the conditions of theorem 1. The second theorem defines the normal distribution conditions for the average sample of independent random variables whose mathematical expectations fall in the same interval, and whose variances also fall in the same interval. The corollary of the second theorem determines the normal distribution for the sum of independent random variables under the conditions of theorem 2. According to the formula relations proved in theorem 1, a table of the required number of terms in the Central limit theorem is calculated to ensure the specified accuracy of approximation of the distribution of the values of the sample average to the normal distribution law. A graph of this dependence is constructed. The dependence is well approximated by a polynomial of the sixth degree. The relations and proved theorems obtained in the article are simple, from the point of view of calculations, and allow controlling the testing process for evaluating students ' knowledge. They make it possible to determine the number of experts when making collective decisions in the economy and organizational management systems, to conduct optimal selective quality control of products, to carry out the necessary number of observations and reasonable diagnostics in medicine.


2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


1972 ◽  
Vol 12 (4) ◽  
pp. 183-194
Author(s):  
V. Paulauskas

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: В. Паулаускас. Оценка скорости сходимости в центральной предельной теореме для разнораспределенных слагаемых V. Paulauskas. Konvergavimo greičio įvertinimas centrinėje ribinėje teoremoje nevienodai pasiskirsčiusiems dėmenims


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingzhou Xu ◽  
Kun Cheng

By an inequality of partial sum and uniform convergence of the central limit theorem under sublinear expectations, we establish precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under sublinear expectations.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 219-230
Author(s):  
C. R. Heathcote

Let X1, X2,…be independent and identically distributed non-lattice random variables with zero, varianceσ2<∞, and partial sums Sn = X1+X2+…+X.


Sign in / Sign up

Export Citation Format

Share Document