Sodium cyanoborohydride

Author(s):  
Tse‐Lok Ho ◽  
Mary Fieser ◽  
Louis Fieser ◽  
Rick Danheiser ◽  
William Roush
Author(s):  
James F. Hainfeld ◽  
Frederic R. Furuya

Glutaraldehyde is a useful tissue and molecular fixing reagents. The aldehyde moiety reacts mainly with primary amino groups to form a Schiff's base, which is reversible but reasonably stable at pH 7; a stable covalent bond may be formed by reduction with, e.g., sodium cyanoborohydride (Fig. 1). The bifunctional glutaraldehyde, (CHO-(CH2)3-CHO), successfully stabilizes protein molecules due to generally plentiful amines on their surface; bovine serum albumin has 60; 59 lysines + 1 α-amino. With some enzymes, catalytic activity after fixing is preserved; with respect to antigens, glutaraldehyde treatment can compromise their recognition by antibodies in some cases. Complicating the chemistry somewhat are the reported side reactions, where glutaraldehyde reacts with other amino acid side chains, cysteine, histidine, and tyrosine. It has also been reported that glutaraldehyde can polymerize in aqueous solution. Newer crosslinkers have been found that are more specific for the amino group, such as the N-hydroxysuccinimide esters, and are commonly preferred for forming conjugates. However, most of these linkers hydrolyze in solution, so that the activity is lost over several hours, whereas the aldehyde group is stable in solution, and may have an advantage of overall efficiency.


2014 ◽  
Vol 2 (44) ◽  
pp. 18952-18958 ◽  
Author(s):  
Mitasree Maity ◽  
Uday Maitra

Palladium nanoparticles were efficiently prepared in situ by sodium cyanoborohydride reduction of Pd(ii) at room temperature using calcium-cholate hydrogel fibers as templates. The PdNPs self-organize on the gel fibers, which supports the controlled growth as well as stabilization of PdNPs. The hybrid xerogel was used as an efficient catalyst for the Suzuki coupling reaction in water.


Sign in / Sign up

Export Citation Format

Share Document