biologically active
Recently Published Documents


TOTAL DOCUMENTS

16638
(FIVE YEARS 6480)

H-INDEX

182
(FIVE YEARS 38)

2022 ◽  
Vol 13 (1) ◽  
pp. 160-171
Author(s):  
Nitin Kumar ◽  
Vinod Kumar ◽  
Yogita Chowdhary

In this review article, we discussed old to new synthetic methods used for the preparation of 1,2,3,4-Tetrahydrocarbazole (THCz) based on reported literature. Around the worldwide, various researchers energetically reported new synthetic methods for tetrahydrocarbazoles preparation using conventional method or microwave method or use of catalyst. This review will be helpful to synthetic and medicinal chemist to find selective method for the preparation of 1,2,3,4-Tetrahydrocarbazoles with good percentage yield and less time. This review will also useful to medicinal chemist to design new biologically active tetrahydrocarbazoles based on reported synthetic methods.


Cosmetics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Maya Stoyneva-Gärtner ◽  
Blagoy Uzunov ◽  
Georg Gärtner

Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background Methane production and fatty acids (FA) biohydrogenation in the rumen are two main constraints in ruminant production causing environmental burden and reducing food product quality. Rumen functions can be modulated by the biologically active compounds (BACs) of plant origins as shown in several studies e.g. reduction in methane emission, modulation of FA composition with positive impact on the ruminant products. Coleus amboinicus Lour. (CAL) contains high concentration of polyphenols that may potentially reduce methane production and modulate ruminal biohydrogenation of unsaturated FA. This study aimed to investigate the effect of BAC of Coleus amboinicus Lour. (CAL) fed to growing lambs on ruminal methane production, biohydrogenation of unsaturated FA and meat characteristics. In this study, the in vitro experiment aiming at determining the most effective CAL dose for in vivo experiments was followed by two in vivo experiments in rumen-cannulated rams and growing lambs. Experiment 1 (RUSITEC) comprised of control and three experimental diets differing in CAL content (10%, 15%, and 20% of the total diet). The two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Exp. 2) and 16 growing lambs (Exp. 3). Animals were assigned into the control (CON) and experimental (20% of CAL) groups. Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results CAL lowered in vitro methane production by 51%. In the in vivo Exp. 3, CAL decreased methane production by 20% compared with the CON group, which corresponded to reduction of total methanogen counts by up to 28% in all experiments, notably Methanobacteriales. In Exp. 3, CAL increased or tended to increase populations of some rumen bacteria (Ruminococcus albus, Megasphaera elsdenii, Butyrivibrio proteoclasticus, and Butyrivibrio fibrisolvens). Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in vivo. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. CAL reduced the mRNA expression of four out of five genes investigated in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions Summarizing, polyphenols of CAL origin (20% in diet) mitigated ruminal methane production by inhibiting the methanogen communities. CAL supplementation also improved ruminal environment by modulating ruminal bacteria involved in fermentation and biohydrogenation of FA. Besides, CAL elevated the LNA concentration, which improved meat quality through increased deposition of n-3 PUFA.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Catarina Melim ◽  
Maria R. Lauro ◽  
Isabel M. Pires ◽  
Paulo J. Oliveira ◽  
Célia Cabral

The gastrointestinal (GI) tract is composed of rapidly renewing cells, which increase the likelihood of cancer. Colorectal cancer is one of the most frequently diagnosed GI cancers and currently stands in second place regarding cancer-related mortality. Unfortunately, the treatment of GI is limited, and few developments have occurred in the field over the years. With this in mind, new therapeutic strategies involving biologically active phytocompounds are being evaluated as anti-cancer agents. Vegetables such as broccoli, brussels sprouts, cabbage, cauliflower, and radish, all belonging to the Brassicaceae family, are high in dietary fibre, minerals, vitamins, carotenoids, polyphenols, and glucosinolates. The latter compound is a secondary metabolite characteristic of this family and, when biologically active, has demonstrated anti-cancer properties. This article reviews the literature regarding the potential of Cruciferous vegetables in the prevention and/or treatment of GI cancers and the relevance of appropriate compound formulations for improving the stability and bioaccessibility of the major Cruciferous compounds, with a particular focus on glucosinolates.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Kenichiro Ito ◽  
Yoshihiko Matsuda ◽  
Ayako Mine ◽  
Natsuki Shikida ◽  
Kazutoshi Takahashi ◽  
...  

AbstractMimetics of growth factors and cytokines are promising tools for culturing large numbers of cells and manufacturing regenerative medicine products. In this study, we report single-chain tandem macrocyclic peptides (STaMPtides) as mimetics in a new multivalent peptide format. STaMPtides, which contain two or more macrocyclic peptides with a disulfide-closed backbone and peptide linkers, are successfully secreted into the supernatant by Corynebacterium glutamicum-based secretion technology. Without post-secretion modification steps, such as macrocyclization or enzymatic treatment, bacterially secreted STaMPtides form disulfide bonds, as designed; are biologically active; and show agonistic activities against respective target receptors. We also demonstrate, by cell-based assays, the potential of STaMPtides, which mimic growth factors and cytokines, in cell culture. The STaMPtide technology can be applied to the design, screening, and production of growth factor and cytokine mimetics.


2022 ◽  
Author(s):  
Natalia A. Luchnikova ◽  
Polina Yu. Maltseva ◽  
Victoria V. Grishko ◽  
Irina B. Ivshina

The ability of actinobacteria of the genus Rhodococcus to transform oleanolic acid (OA), a plant pentacyclic triterpenoid, was shown for the first time using bioresources of the Regional Specialized Collection of AlkanotrophicMicroorganisms (IEGM; WDCM #768;www.iegmcol.ru). The most promising strains (R.opacus IEGM 488 and R.rhodochrousIEGM 285) were selected, and these catalyzed80% bioconversion of OA (0.5 g/L) in the presence of n-hexadecane (0.1% v/v) for seven days. The process of OA bioconversion was accompanied by a gradual decrease in the culture medium pH. Adaptive responses of bacterial cells to the OA effects included the formation of compact cellular aggregates, a marked change in the surface-to-volume ratio of cells, and a significant increase in the Zeta potential values. The results demonstrated that the process of OA bioconversion was catalyzed by membrane-bound enzyme complexes. Participation of cytochrome P450-dependent monooxygenases in the oxidation of the OA moleculewas confirmedusing specific inhibitors. The obtained data expand our knowledge on the catalytic activity of actinobacteria of the genus Rhodococcus and their possible use as biocatalysts for the bioconversion of complex hydrophobic compounds. The results can also be used inthe searchfor promising OA derivatives to be used in the synthesis of biologically active agents. Keywords: bioconversion, oleanolic acid, Rhodococcus, biologically active compounds


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Naresh Kumar ◽  
Nidhi Goel

Abstract Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.


2022 ◽  
Vol 10 (1) ◽  
pp. 171
Author(s):  
Petr Jaroš ◽  
Maria Vrublevskaya ◽  
Kristýna Lokočová ◽  
Jana Michailidu ◽  
Irena Kolouchová ◽  
...  

The use of antibiotics or antifungals to control infections caused by pathogenic microorganisms is currently insufficiently effective because of their emerging resistance. Thanks to the ability of microorganisms to form a biofilm and thus increase their resistance to administered drugs even more, modern medicine faces the task of finding novel substances to combat infections caused by them. In this regard, the effects of essential oils or plant extracts are often studied. Among the relatively neglected plants is Boswellia serrata, which has a high content of biologically active boswellic acids. In this study, we focused on one of the most common nosocomial infections, which are caused by Candida species. The most common representative is C. albicans, although the number of infections caused by non-albicans species has recently been increasing. We focused on the antifungal activity of Boswellia serrata extract Bioswellix against planktonic and adhering cells of Candida albicans, Candida parapsilosis and Candida krusei. The antifungal activity against adhering cells was further explored by determining the metabolic activity of cells (MTT) and determining the total amount of biofilm using crystal violet. Boswellic acid-containing plant extract was shown to suppress the growth of a suspension population of all tested Candida species. Boswellia serrata extract Bioswellix was most effective in inhibiting C. albicans biofilm formation.


2022 ◽  
Author(s):  
Rima Kirakosyan ◽  
Elena Kalashnikova

This study aimed to optimize the steps of obtaining regenerated cabbage plants by direct embryogenesis from isolated anthers and ovaries. Stepwise pretreatment of inflorescences was usedfor the studied hybrids and inbred lines. First, the inflorescences were placed in water and kept at a temperature of +4-6∘C for one day without the use of biologically active substances. Then the inflorescences were placed in a solution of the drug Dropp (10 mg/l) and cultivated for two days. After that, the anthers and ovaries were isolated from the flower buds and cultured on the MS culture medium at a temperature of + 32∘C for one day. The cultivation of the isolated explants on a nutrient medium (containing 0.01 mg/lof Dropp, 1.0 mg/lof NAA, 500 mg/lof asparagine, 100 mg/l of tyrosine, and 10 g/l of sucrose)led to an increase in their morphogenetic potential in the culture of anthers and ovaries (by 3.42% and 5.54%, respectively).A cytological method was usedto demonstrate the haploid nature of the regenerating plants. The number of chromosomes in the root meristem andleaves, and the chloroplasts in the closing cells of the stomatawere calculated. Keywords: cabbage, culture in vitro, regenerated plants, anthers, ovaries, reproductive organs


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Arvind Singh ◽  
Amartya Basu ◽  
Aditi Sharma ◽  
Anu Priya ◽  
Manmmet Kaur ◽  
...  

Abstract 2-Hydroxy-1,4-naphthaquinone, commonly known as lawsone, represents an extremely important biologically active naturally occurring compound. It can easily be isolated from Lawsonia inermis (henna) tree leaf extract. Last decade has seen tremendous applications of lawsone as a starting component for the preparation of various organic scaffolds. Many of these synthesized scaffolds showed a wide range of biological activities including potential activities towards several cancer cell lines. This review deals with diverse synthetic methods of lawsone derived scaffolds and their screening against different anti-cancer cell lines along with promising results.


Sign in / Sign up

Export Citation Format

Share Document