Teletraffic Models of Batched Poisson Input

Keyword(s):  
1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


Author(s):  
O. A. Chechelnitsky

The present article is devoted to research the multi-channelk model with the parallel structure. It means that we consider the model which consists of two infinite-server queues. The service time in the each system has general function of distribution. In this case the stochastic dynamic of our model cannot be defined by Markov chain. As a result, analysis of such models is much more difficult than that of the corresponding Markovian queueing models. Besides we assume that customers arrive to our model according a bivariate Poisson input flow. This input process is characterized by the fact that customers arrive according to a bivariate Poisson flow simultaneously. We consider the number of customers in the systems at time t. This stochastic process describes the state of our model. In present paper we find the limit joint distribution of the number of customers in the systems. In a general way (by differentiating the corresponding generating function.) we obtain the main characteristics of this distribution, such as the expected number of customers in the nodes, its variance and correlation. In the case when parameters of our model dependent on the parameter n (number of series) the limit normal distribution was obtained for the service process in the stationary regime.


1982 ◽  
Vol 19 (2) ◽  
pp. 433-438 ◽  
Author(s):  
P.-C. G. Vassiliou

We study the limiting behaviour of a manpower system where the non-homogeneous Markov chain model proposed by Young and Vassiliou (1974) is applicable. This is done in the cases where the input is a time-homogeneous and time-inhomogeneous Poisson random variable. It is also found that the number in the various grades are asymptotically mutually independent Poisson variates.


1991 ◽  
Vol 28 (04) ◽  
pp. 852-863
Author(s):  
Rengarajan Srinivasan

We consider the asymmetric simple exclusion process which starts from a product measure such that all the sites to the left of zero (including zero) are occupied and the right of 0 (excluding 0) are empty. We label the particle initially at 0 as the leading particle. We study the long-term behaviour of this process near large sites when the leading particle's holding time is different from that of the other particles. In particular, we assume that the leading particle moves at a slower rate than the other particles. We call this modified asymmetric simple exclusion process the road-hog process. Coupling and stochastic ordering techniques are used to derive the density profile of this process. Road-hog processes are useful in modelling series of exponential queues with Poisson and non-Poisson input process. The density profiles dramatically illustrate the flow of customers through the queues.


1974 ◽  
Vol 11 (03) ◽  
pp. 529-543
Author(s):  
Horand Störmer

The paper deals with a stochastic organization model described by a generalized Poisson input process and given probabilities of entering individuals obtaining certain attributes in this organization. The distribution of attributes at any given instant is derived. Examples illustrate the application of obtained results.


Sign in / Sign up

Export Citation Format

Share Document