simple exclusion process
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 40)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Alexey Bufetov ◽  
Peter Nejjar

AbstractThis paper studies the mixing behavior of the Asymmetric Simple Exclusion Process (ASEP) on a segment of length N. Our main result is that for particle densities in (0, 1),  the total-variation cutoff window of ASEP is $$N^{1/3}$$ N 1 / 3 and the cutoff profile is $$1-F_{\mathrm {GUE}},$$ 1 - F GUE , where $$F_{\mathrm {GUE}}$$ F GUE is the Tracy-Widom distribution function. This also gives a new proof of the cutoff itself, shown earlier by Labbé and Lacoin. Our proof combines coupling arguments, the result of Tracy–Widom about fluctuations of ASEP started from the step initial condition, and exact algebraic identities coming from interpreting the multi-species ASEP as a random walk on a Hecke algebra.


Author(s):  
Erik Aas ◽  
Arvind Ayyer ◽  
Svante Linusson ◽  
Samu Potka

Abstract Let $W$ be a finite Weyl group and $\widetilde W$ the corresponding affine Weyl group. A random element of $\widetilde W$ can be obtained as a reduced random walk on the alcoves of $\widetilde W$. By a theorem of Lam (Ann. Prob. 2015), such a walk almost surely approaches one of $|W|$ many directions. We compute these directions when $W$ is $B_n$, $C_n$, and $D_n$ and the random walk is weighted by Kac and dual Kac labels. This settles Lam’s questions for types $B$ and $C$ in the affirmative and for type $D$ in the negative. The main tool is a combinatorial two row model for a totally asymmetric simple exclusion process (TASEP) called the $D^*$-TASEP, with four parameters. By specializing the parameters in different ways, we obtain TASEPs for each of the Weyl groups mentioned above. Computing certain correlations in these TASEPs gives the desired limiting directions.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1578
Author(s):  
Eunghyun Lee

Assume that each species l has its own jump rate bl in the multi-species totally asymmetric simple exclusion process. We show that this model is integrable in the sense that the Bethe ansatz method is applicable to obtain the transition probabilities for all possible N-particle systems with up to N different species.


Author(s):  
Leonid Petrov ◽  
Axel Saenz

AbstractWe obtain a new relation between the distributions $$\upmu _t$$ μ t at different times $$t\ge 0$$ t ≥ 0 of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions $$\upmu _t$$ μ t backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving $$\upmu _t$$ μ t which in turn brings new identities for expectations with respect to $$\upmu _t$$ μ t . The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang–Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.


Sign in / Sign up

Export Citation Format

Share Document