scholarly journals RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis

2021 ◽  
pp. 2004852
Author(s):  
Chun‐Ling Luo ◽  
Xiao‐Chen Xu ◽  
Chu‐Jun Liu ◽  
Shuai He ◽  
Jie‐Rong Chen ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Heather A Underkofler ◽  
Sadguna Balijepalli ◽  
Brooke M Moungey ◽  
Jessica K Slind ◽  
Jabe M Best ◽  
...  

Approximately 35– 45% of patients that are genotype positive for congenital Long QT Syndrome (LQT) have mutations in the human Ether-a-go-go Related Gene ( hERG ). The purpose of this study was to elucidate the mechanisms that regulate ER export and cell surface expression of hERG channel protein, because these steps are impaired for ~90% of LQT-linked hERG missense mutations. The small GTPases Sar1 and Arf1 regulate the conventional vesicular transport (trafficking) for the ER export of proteins to the Golgi apparatus (Golgi). We generated dominant negative (DN) mutations for Sar1 and Arf1, and co-expressed these DN GTPases with hERG in HEK 293 cells. The trafficking of hERG through the Golgi can be visualized biochemically using Western blot analysis, because additional glycosylation of hERG in the Golgi (Golgi processing) increases the MW of hERG protein from 135kDa to 155kDa. Co-expression of hERG and DN-Sar1 inhibited Golgi processing, decreased hERG current (I hERG ) by 85% compared to control (n≥8 cells per group, p<0.05), and decreased the staining of hERG protein at the cell surface, while co-expression of hERG and DN-Arf1 showed no significant effect on Golgi processing or I hERG . This lack of an effect by DN-Arf1 was selective for hERG as it efficiently blocked the transport of previously reported proteins. Rab11 GTPases regulate the trafficking of proteins from endosomal compartments to the cell surface membrane and/or the Golgi. Rab11a is ubiquitously expressed, whereas Rab11b is expressed primarily in brain and heart. Co-expression of DN-Rab11a did not alter Golgi processing of hERG but reduced I hERG by 51% compared to control (n≥8 cells per group, p<0.05), whereas co-expression of DN-Rab11b inhibited Golgi processing of hERG and reduced I hERG by 79% compared to control (n=8 cells per group, p<0.05). Thus, Rab11a appears to regulate the trafficking of hERG to the cell surface after processing in the Golgi, whereas Rab11b regulates the trafficking of hERG prior to processing in the Golgi. These data suggest that hERG does not traffic via the conventional pathway from the ER to the Golgi, but rather in an unconventional pathway from the ER to endosomal compartments prior to Rab11b-mediated transport to the Golgi and subsequent delivery to the cell membrane.


2012 ◽  
Vol 22 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Vincent Soubannier ◽  
Gian-Luca McLelland ◽  
Rodolfo Zunino ◽  
Emelie Braschi ◽  
Peter Rippstein ◽  
...  

2016 ◽  
Vol 22 (S3) ◽  
pp. 1012-1013
Author(s):  
Michael J. Zeitz ◽  
Carissa C. James ◽  
James W. Smyth

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Saumya Maru ◽  
Ge Jin ◽  
Dhimant Desai ◽  
Shantu Amin ◽  
Shwetank ◽  
...  

ABSTRACT Polyomaviruses (PyVs) silently infect most humans, but they can cause life-threatening diseases in immunocompromised individuals. The JC polyomavirus (JCPyV) induces progressive multifocal leukoencephalopathy, a severe demyelinating disease in multiple sclerosis patients receiving immunomodulatory therapy, and BK polyomavirus (BKPyV)-associated nephropathy is a major cause of kidney allograft failure. No effective anti-PyV agents are available. Several compounds have been reported to possess anti-PyV activity in vitro, but none have shown efficacy in clinical trials. Productive PyV infection involves usurping the cellular retrograde vesicular transport pathway to enable endocytosed virions to navigate to the endoplasmic reticulum where virion uncoating begins. Compounds inhibiting this pathway have been shown to reduce infection by simian virus 40 (SV40), JCPyV, and BKPyV in tissue culture. In this study, we investigated the potential of Retro-2.1, a retrograde transport inhibitor, to limit infection by mouse polyomavirus (MuPyV) in vivo. We found that Retro-2.1 significantly reduced MuPyV levels in the kidney during acute infection without affecting renal function or the MuPyV-specific CD8 T cell response. To approximate the clinical setting of PyV resurgence in immunocompromised hosts, we showed that antibody-mediated depletion of T cells in persistently infected mice elevated MuPyV levels in the kidney and that Retro-2.1 blunted this increase in virus levels. In summary, these data indicate that inhibition of retrograde vesicular transport in vivo controls infection in a natural PyV mouse model and supports development of these compounds as potential therapeutic agents for individuals at risk for human PyV-associated diseases. IMPORTANCE PyVs can cause significant morbidity and mortality in immunocompromised individuals. No clinically efficacious anti-PyV therapeutic agents are available. A recently identified inhibitor of retrograde transport, Retro-2cycl, blocks movement of PyV virion-containing vesicles from early endosomes to the endoplasmic reticulum, an early step in the PyV life cycle. Retro-2cycl and its derivatives have been shown to inhibit infection by human PyVs in tissue culture. Here, we demonstrate that a derivative of Retro-2cycl, Retro-2.1, reduces infection by MuPyV in the kidneys of acutely infected mice. Mimicking the common clinical scenario of PyV resurgence, we further show that MuPyV levels increase in the kidneys of immunocompromised, persistently infected mice and that this increase is inhibited by Retro-2.1. These data provide the first evidence for control of a natural PyV infection in vivo by administration of an inhibitor of retrograde transport.


2007 ◽  
Vol 104 (11) ◽  
pp. 4407-4412 ◽  
Author(s):  
C. Zuber ◽  
J. H. Cormier ◽  
B. Guhl ◽  
R. Santimaria ◽  
D. N. Hebert ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Rebecca S Mathew ◽  
Antonis Tatarakis ◽  
Andrii Rudenko ◽  
Erin M Johnson-Venkatesh ◽  
Yawei J Yang ◽  
...  

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.


Sign in / Sign up

Export Citation Format

Share Document