scholarly journals Scalable Fabrication of Black Cu‐Embedded Polydimethylsiloxane for Enhancing Triboelectric Nanogenerator Performance in Energy Harvesting and Self‐Powered Sensing

Author(s):  
Mengyan Yang ◽  
Tao Hua
Nano Energy ◽  
2021 ◽  
pp. 105964
Author(s):  
Sugato Hajra ◽  
Venkateswaran Vivekananthan ◽  
Manisha Sahu ◽  
Gaurav Khandelwal ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 598 ◽  
Author(s):  
Kwangseok Lee ◽  
Jeong-won Lee ◽  
Kihwan Kim ◽  
Donghyeon Yoo ◽  
Dong Kim ◽  
...  

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid–solid and solid–liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.


Nano Energy ◽  
2017 ◽  
Vol 39 ◽  
pp. 429-436 ◽  
Author(s):  
Xiaofeng Wang ◽  
Yajiang Yin ◽  
Fang Yi ◽  
Keren Dai ◽  
Simiao Niu ◽  
...  

2020 ◽  
Vol 8 (42) ◽  
pp. 22257-22268
Author(s):  
Manisha Sahu ◽  
Venkateswaran Vivekananthan ◽  
Sugato Hajra ◽  
Abisegapriyan K S ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Improved energy harvesting performance in triboelectric nanogenerator using piezoelectric polarization for self-powered IR signaling and body activity monitoring.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

AbstractAs a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m−2, which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs.


Sign in / Sign up

Export Citation Format

Share Document