surface charge
Recently Published Documents


TOTAL DOCUMENTS

4982
(FIVE YEARS 960)

H-INDEX

134
(FIVE YEARS 17)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Zhang ◽  
Daoyuan Chen ◽  
Lin Li ◽  
Kaoxiang Sun

AbstractSurface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems. Graphical Abstract


Author(s):  
Fangxin Wang ◽  
Yongyang Sun ◽  
Guanggong Zong ◽  
Wenyan Liang ◽  
Bin Yang ◽  
...  

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Nolan File ◽  
Joseph Carmicheal ◽  
Alexey V. Krasnoslobodtsev ◽  
Nicole C. Japp ◽  
Joshua J. Souchek ◽  
...  

SERS immunoassay biosensors hold immense potential for clinical diagnostics due to their high sensitivity and growing interest in multi-marker panels. However, their development has been hindered by difficulties in designing compatible extrinsic Raman labels. Prior studies have largely focused on spectroscopic characteristics in selecting Raman reporter molecules (RRMs) for multiplexing since the presence of well-differentiated spectra is essential for simultaneous detection. However, these candidates often induce aggregation of the gold nanoparticles used as SERS nanotags despite their similarity to other effective RRMs. Thus, an improved understanding of factors affecting the aggregation of RRM-coated gold nanoparticles is needed. Substituent electronic effects on particle stability were investigated using various para-substituted thiophenols. The inductive and resonant effects of functional group modifications were strongly correlated with nanoparticle surface charge and hence their stability. Treatment with thiophenols diminished the negative surface charge of citrate-stabilized gold nanoparticles, but electron-withdrawing substituents limited the magnitude of this diminishment. It is proposed that this phenomenon arises by affecting the interplay of competing sulfur binding modes. This has wide-reaching implications for the design of biosensors using thiol-modified gold surfaces. A proof-of-concept multiplexed SERS biosensor was designed according to these findings using the two thiophenol compounds with the most electron-withdrawing substitutions: NO2 and CN.


2022 ◽  
Vol 8 ◽  
Author(s):  
Peijun Zhu ◽  
Chunhua Lai ◽  
Mingwei Cheng ◽  
Yiheng He ◽  
Yan Xu ◽  
...  

A biomaterial-mediated immune response is a critical factor to determine the cell fate as well as the tissue-regenerative outcome. Although piezoelectric-membranes have attracted considerable interest in the field of guided bone regeneration thanks to their biomimetic electroactivity, the influence of their different surface-charge polarities on the immune-osteogenic microenvironment remains obscure. The present study aimed at investigating the interaction between piezoelectric poly (vinylidene fluoridetrifluoroethylene) [P (VDF-TrFE)] membranes with different surface polarities (negative or positive) and macrophage response, as well as their subsequent influence on osteogenesis from an immunomodulating perspective. Specifically, the morphology, wettability, crystal phase, piezoelectric performance, and surface potential of the synthetic P (VDF-TrFE) samples were systematically characterized. In addition, RAW 264.7 macrophages were seeded onto differently charged P (VDF-TrFE) surfaces, and the culture supernatants were used to supplement cultures of rat bone marrow mesenchymal stem cells (rBMSCs) on the corresponding P (VDF-TrFE) surfaces. Our results revealed that oppositely charged surfaces had different abilities in modulating the macrophage-immune-osteogenic microenvironment. Negatively charged P (VDF-TrFE), characterized by the highest macrophage elongation effect, induced a switch in the phenotype of macrophages from M0 (inactivated) to M2 (anti-inflammatory), thus promoting the osteogenic differentiation of rBMSCs by releasing anti-inflammatory cytokine IL-10. Interestingly, positively charged P (VDF-TrFE) possessed pro-inflammatory properties to induce an M1 (pro-inflammatory) macrophage-dominated reaction, without compromising the subsequent osteogenesis as expected. In conclusion, these findings highlighted the distinct modulatory effect of piezoelectric-P (VDF-TrFE) membranes on the macrophage phenotype, inflammatory reaction, and consequent immune-osteogenic microenvironment depending on their surface-charge polarity. This study provides significant insight into the design of effective immunoregulatory materials for the guided bone regeneration application.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 164
Author(s):  
Ruihao Sun ◽  
Shiyu Sun ◽  
Xiu Liang ◽  
Hongyu Gong ◽  
Xingshuang Zhang ◽  
...  

Surface charge transfer doping has attracted much attention in modulating the optical and electrical behavior of 2D transition metal dichalcogenides (TMDCs), where finding controllable and efficient dopants is crucial. Here, 1,1,2,2-tetraphenylethylene (TPE) derivative molecules with aggregation-induced emission (AIE) effect were selected as adjustable dopants. By designing nitro and methoxyl functional groups and surface coating, controlled p/n-type doping can be achieved on a chemical vapor deposition (CVD) grown monolayer, MoS2. We investigated the electron transfer behavior between these two dopants and MoS2 with fluorescence, Raman, X-ray photoelectron spectra and transient absorption spectra. 1,1,2,2-Tetrakis(4-nitrophenyl)ethane (TPE-4NO2) with a negative charge aggregation can be a donor to transfer electrons to MoS2, while 1,1,2,2-Tetrakis(4-methoxyphenyl)ethane (TPE-4OCH3) is the opposite and electron-accepting. Density functional theory calculations further explain and confirm these experimental results. This work shows a new way to select suitable dopants for TMDCs, which is beneficial for a wide range of applications in optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document