Synergetic enhancement of energy harvesting performance in triboelectric nanogenerator using ferroelectric polarization for self-powered IR signaling and body activity monitoring

2020 ◽  
Vol 8 (42) ◽  
pp. 22257-22268
Author(s):  
Manisha Sahu ◽  
Venkateswaran Vivekananthan ◽  
Sugato Hajra ◽  
Abisegapriyan K S ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Improved energy harvesting performance in triboelectric nanogenerator using piezoelectric polarization for self-powered IR signaling and body activity monitoring.

Nano Energy ◽  
2021 ◽  
pp. 105964
Author(s):  
Sugato Hajra ◽  
Venkateswaran Vivekananthan ◽  
Manisha Sahu ◽  
Gaurav Khandelwal ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 598 ◽  
Author(s):  
Kwangseok Lee ◽  
Jeong-won Lee ◽  
Kihwan Kim ◽  
Donghyeon Yoo ◽  
Dong Kim ◽  
...  

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid–solid and solid–liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.


Nano Energy ◽  
2017 ◽  
Vol 39 ◽  
pp. 429-436 ◽  
Author(s):  
Xiaofeng Wang ◽  
Yajiang Yin ◽  
Fang Yi ◽  
Keren Dai ◽  
Simiao Niu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

AbstractAs a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m−2, which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1197 ◽  
Author(s):  
Shawkat Ali ◽  
Saleem Khan ◽  
Amine Bermak

A self-powered device for human activity monitoring and energy harvesting for Internet of Things (IoT) devices is proposed. The self-powered device utilizes flexible Nano-generators (NGs), flexible diodes and off-the-shelf capacitors. During footsteps the NGs generate an AC voltage then it is converted into DC using rectifiers and the DC power is stored in a capacitor for powering the IoT devices. Polydimethylsiloxane (PDMS) and zinc stannate (ZnSnO3) composite is utilized for the NG active layer, indium tin oxide (ITO) and aluminum (Al) are used as the bottom and top electrodes, respectively. Four diodes are fabricated on the bottom electrode of the NG and connected in bridge rectifier configuration. A generated voltage of 18 Vpeak was achieved with a human footstep. The self-powered smart device also showed excellent robustness and stable energy scavenger from human footsteps. As an application we demonstrate human activity detection and energy harvesting for IoT devices.


Nano Energy ◽  
2020 ◽  
Vol 75 ◽  
pp. 104813 ◽  
Author(s):  
Shan Lu ◽  
Lingxiao Gao ◽  
Xin Chen ◽  
Daqiao Tong ◽  
Wenqian Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document