scholarly journals Cross‐Coupling of Aryl/Alkenyl Pivalates with Organozinc Reagents through Nickel‐Catalyzed CO Bond Activation under Mild Reaction Conditions

2009 ◽  
Vol 48 (8) ◽  
pp. 1351-1351
Author(s):  
Bi‐Jie Li ◽  
Yi‐Zhou Li ◽  
Xing‐Yu Lu ◽  
Jia Liu ◽  
Bing‐Tao Guan ◽  
...  
2008 ◽  
Vol 120 (52) ◽  
pp. 10278-10281 ◽  
Author(s):  
Bi-Jie Li ◽  
Yi-Zhou Li ◽  
Xing-Yu Lu ◽  
Jia Liu ◽  
Bing-Tao Guan ◽  
...  

2009 ◽  
Vol 121 (8) ◽  
pp. 1377-1377
Author(s):  
Bi‐Jie Li ◽  
Yi‐Zhou Li ◽  
Xing‐Yu Lu ◽  
Jia Liu ◽  
Bing‐Tao Guan ◽  
...  

2019 ◽  
Vol 10 (16) ◽  
pp. 4430-4435 ◽  
Author(s):  
Huifeng Yue ◽  
Chen Zhu ◽  
Li Shen ◽  
Qiuyang Geng ◽  
Katharina J. Hock ◽  
...  

The reductive cross coupling of pyridinium salts derived from readily available primary alkyl amines with aryl halides has been achieved under mild reaction conditions using a nickel catalyst.


2020 ◽  
Author(s):  
Shun Wang ◽  
Hua Wang ◽  
Burkhard Koenig

Cross-coupling reactions are essential tools in modern synthesis of drugs, natural products and materials. The recent developments in photocatalytic radical generation have improved and expanded the classic metal-catalyzed cross coupling reactions even further. However, for sp<sup>2</sup> cross coupling reactions aryl halides or related active leaving groups, such as triflates, are required. Substituted arenes bearing strong C-X bonds remain inert to current methods. We describe now a new thiolate photocatalysis for the activation of inert substituted arenes in ipso-borylation reactions. This catalytic system exhibits strong reducing power and allows the borylation of stable C<sub>aryl</sub>−F, C<sub>aryl</sub>−O, C<sub>aryl</sub>-N and C<sub>aryl</sub>−S bonds, which are considered as chemically stable at mild reaction conditions. Our method considerably widens the available substrate scope of aryl radical precursors and we anticipate that this report will inspire new chemistry based on inert chemical bond activation.


2020 ◽  
Author(s):  
Shun Wang ◽  
Hua Wang ◽  
Burkhard Koenig

Cross-coupling reactions are essential tools in modern synthesis of drugs, natural products and materials. The recent developments in photocatalytic radical generation have improved and expanded the classic metal-catalyzed cross coupling reactions even further. However, for sp<sup>2</sup> cross coupling reactions aryl halides or related active leaving groups, such as triflates, are required. Substituted arenes bearing strong C-X bonds remain inert to current methods. We describe now a new thiolate photocatalysis for the activation of inert substituted arenes in ipso-borylation reactions. This catalytic system exhibits strong reducing power and allows the borylation of stable C<sub>aryl</sub>−F, C<sub>aryl</sub>−O, C<sub>aryl</sub>-N and C<sub>aryl</sub>−S bonds, which are considered as chemically stable at mild reaction conditions. Our method considerably widens the available substrate scope of aryl radical precursors and we anticipate that this report will inspire new chemistry based on inert chemical bond activation.


Synlett ◽  
2020 ◽  
Author(s):  
David C. Leitch ◽  
Joseph Becica

AbstractThe activation of strong C–O bonds in cross-coupling catalysis can open up new oxygenate-based feedstocks and building blocks for complex-molecule synthesis. Although Ni catalysis has been the major focus for cross-coupling of carboxylate-based electrophiles, we recently demonstrated that palladium catalyzes not only difficult C–O oxidative additions but also Suzuki-type cross-couplings of alkenyl carboxylates under mild conditions. We propose that, depending on the reaction conditions, either a typical Pd(0)/(II) mechanism or a redox-neutral Pd(II)-only mechanism can operate. In the latter pathway, C–C bond formation occurs through carbopalladation of the alkene, and C–O cleavage by β-carboxyl elimination.1 Introduction2 A Mechanistic Challenge: Activating Strong C–O Bonds3 Exploiting Vinylogy for C–Cl and C–O Oxidative Additions4 An Alternative Mechanism for Efficient Cross-Coupling Catalysis5 Conclusions and Outlook


2020 ◽  
Author(s):  
Jian Cao ◽  
Ernest Armenta ◽  
Lisa Boatner ◽  
Heta Desai ◽  
Neil Chan ◽  
...  

Bioorthogonal chemistry is a mainstay of chemoproteomic sample preparation workflows. While numerous transformations are now available, chemoproteomic studies still rely overwhelmingly on copper-catalyzed azide –alkyne cycloaddition (CuAAC) or 'click' chemistry. Here we demonstrate that gel-based activity-based protein profiling (ABPP) and mass-spectrometry-based chemoproteomic profiling can be conducted using Suzuki–Miyaura cross-coupling. We identify reaction conditions that proceed in complex cell lysates and find that Suzuki –Miyaura cross-coupling and CuAAC yield comparable chemoproteomic coverage. Importantly, Suzuki–Miyaura is also compatible with chemoproteomic target deconvolution, as demonstrated using structurally matched probes tailored to react with the cysteine protease caspase-8. Uniquely enabled by the observed orthogonality of palladium-catalyzed cross-coupling and CuAAC, we combine both reactions to achieve dual protein labeling.


Sign in / Sign up

Export Citation Format

Share Document