Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness

2021 ◽  
Author(s):  
K. Kavitha ◽  
V. Vijayakumar ◽  
R. Udhayakumar ◽  
C. Ravichandran
Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3421-3432 ◽  
Author(s):  
Mohammad Mursaleen ◽  
Bilal Bilalov ◽  
Syed Rizvi

In this paper, we discuss few existence result for solution of an infinite system of fractional differential equations of order ?(1 < ? < 2), with three point boundary value problem in the interval [0, T]. The problem is studied in the classical Banach sequence spaces c0 and lp (1 ? p < 1), using Hausdorff measure of noncompactness and Darbo type fixed point theorem. We also illustrate our results through some concrete examples.


Author(s):  
Jitai Liang ◽  
Zhenhai Liu ◽  
Xuhuan Wang

AbstractIn this paper, we study boundary value problems of nonlinear fractional differential equations in a Banach Space E of the following form: $\left\{ \begin{gathered} D_{0^ + }^p x(t) = f_1 (t,x(t),y(t)),t \in J = [0,1], \hfill \\ D_{0^ + }^q y(t) = f_2 (t,x(t),y(t)),t \in J = [0,1], \hfill \\ x(0) + \lambda _1 x(1) = g_1 (x,y), \hfill \\ y(0) + \lambda _2 y(1) = g_2 (x,y), \hfill \\ \end{gathered} \right. $ where D 0+ denotes the Caputo fractional derivative, 0 < p,q ≤ 1. Some new results on the solutions are obtained, by the concept of measures of noncompactness and the fixed point theorem of Mönch type.


2016 ◽  
Vol 14 (1) ◽  
pp. 370-383 ◽  
Author(s):  
Qixiang Dong ◽  
Can Liu ◽  
Zhenbin Fan

AbstractThis paper is devoted to the study of fractional differential equations with Riemann-Liouville fractional derivatives and infinite delay in Banach spaces. The weighted delay is developed to deal with the case of non-zero initial value, which leads to the unboundedness of the solutions. Existence and uniqueness results are obtained based on the theory of measure of non-compactness, Schaude’s and Banach’s fixed point theorems. As auxiliary results, a fractional Gronwall type inequality is proved, and the comparison property of fractional integral is discussed.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 282 ◽  
Author(s):  
Zidane Baitiche ◽  
Kaddour Guerbati ◽  
Mouffak Benchohra ◽  
Yong Zhou

In this paper, we discuss the existence of solutions for a hybrid boundary value problem of Caputo fractional differential equations. The main tool used in our study is associated with the technique of measures of noncompactness. As an application, we give an example to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document