Melt Index Prediction Based on Adaptive Particle Swarm Optimization Algorithm-Optimized Radial Basis Function Neural Networks

2010 ◽  
Vol 33 (11) ◽  
pp. 1909-1916 ◽  
Author(s):  
C. Zhao ◽  
X. Liu ◽  
F. Ding
2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


Sign in / Sign up

Export Citation Format

Share Document