continuous optimization
Recently Published Documents


TOTAL DOCUMENTS

747
(FIVE YEARS 301)

H-INDEX

46
(FIVE YEARS 13)

2022 ◽  
Vol 41 (1) ◽  
pp. 1-16
Author(s):  
Jian Liu ◽  
Shiqing Xin ◽  
Xifeng Gao ◽  
Kaihang Gao ◽  
Kai Xu ◽  
...  

Wrapping objects using ropes is a common practice in our daily life. However, it is difficult to design and tie ropes on a 3D object with complex topology and geometry features while ensuring wrapping security and easy operation. In this article, we propose to compute a rope net that can tightly wrap around various 3D shapes. Our computed rope net not only immobilizes the object but also maintains the load balance during lifting. Based on the key observation that if every knot of the net has four adjacent curve edges, then only a single rope is needed to construct the entire net. We reformulate the rope net computation problem into a constrained curve network optimization. We propose a discrete-continuous optimization approach, where the topological constraints are satisfied in the discrete phase and the geometrical goals are achieved in the continuous stage. We also develop a hoist planning to pick anchor points so that the rope net equally distributes the load during hoisting. Furthermore, we simulate the wrapping process and use it to guide the physical rope net construction process. We demonstrate the effectiveness of our method on 3D objects with varying geometric and topological complexity. In addition, we conduct physical experiments to demonstrate the practicability of our method.


Author(s):  
Pia Domschke ◽  
Oliver Kolb ◽  
Jens Lang

AbstractWe are concerned with the simulation and optimization of large-scale gas pipeline systems in an error-controlled environment. The gas flow dynamics is locally approximated by sufficiently accurate physical models taken from a hierarchy of decreasing complexity and varying over time. Feasible work regions of compressor stations consisting of several turbo compressors are included by semiconvex approximations of aggregated characteristic fields. A discrete adjoint approach within a first-discretize-then-optimize strategy is proposed and a sequential quadratic programming with an active set strategy is applied to solve the nonlinear constrained optimization problems resulting from a validation of nominations. The method proposed here accelerates the computation of near-term forecasts of sudden changes in the gas management and allows for an economic control of intra-day gas flow schedules in large networks. Case studies for real gas pipeline systems show the remarkable performance of the new method.


Medical image registration has important value in actual clinical applications. From the traditional time-consuming iterative similarity optimization method to the short time-consuming supervised deep learning to today's unsupervised learning, the continuous optimization of the registration strategy makes it more feasible in clinical applications. This survey mainly focuses on unsupervised learning methods and introduces the latest solutions for different registration relationships. The registration for inter-modality is a more challenging topic. The application of unsupervised learning in registration for inter-modality is the focus of this article. In addition, this survey also proposes ideas for future research methods to show directions of the future research.


2022 ◽  
Vol 11 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Anima Naik ◽  
Pradeep Kumar Chokkalingam

In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.


Author(s):  
Ayse Ozmen

Residential customers are the main users generally need a great quantity of natural gas in distribution systems, especially, in the wintry weather season since it is particularly consumed for cooking and space heating. Hence, it ought to be non-interruptible. Since distribution systems have a restricted ability for supply, reasonable planning and prediction through the whole year, especially in winter seasons, have emerged as vital. The Ridge Regression (RR) is formulated mainly to decrease collinearity results through shrinking the regression coefficients and reducing the impact in the model of variables. Conic multivariate adaptive regression splines ((C)MARS) model is constructed as an effective choice for MARS by using inverse problems, statistical learning, and multi-objective optimization theories. In this approach, the model complexity is penalized in the structure of RR and it is constructed a relaxation by utilizing continuous optimization, called Conic Quadratic Programming (CQP). In this study, CMARS and RR are applied to obtain forecasts of residential natural gas demand for local distribution companies (LDCs) that require short-term forecasts, and the model performances are compared by using some criteria. Here, our analysis shows that CMARS models outperform RR models. For one-day-ahead forecasts, CMARS yields a MAPE of about 4.8%, while the same value under RR reaches 8.5%. As the forecast horizon increases, it can be seen that the performance of the methods becomes worse, and for a forecast one week ahead, the MAPE values for CMARS and RR are 9.9% and 18.3%, respectively.


Medical image registration has important value in actual clinical applications. From the traditional time-consuming iterative similarity optimization method to the short time-consuming supervised deep learning to today's unsupervised learning, the continuous optimization of the registration strategy makes it more feasible in clinical applications. This survey mainly focuses on unsupervised learning methods and introduces the latest solutions for different registration relationships. The registration for inter-modality is a more challenging topic. The application of unsupervised learning in registration for inter-modality is the focus of this article. In addition, this survey also proposes ideas for future research methods to show directions of the future research.


Medical image registration has important value in actual clinical applications. From the traditional time-consuming iterative similarity optimization method to the short time-consuming supervised deep learning to today's unsupervised learning, the continuous optimization of the registration strategy makes it more feasible in clinical applications. This survey mainly focuses on unsupervised learning methods and introduces the latest solutions for different registration relationships. The registration for inter-modality is a more challenging topic. The application of unsupervised learning in registration for inter-modality is the focus of this article. In addition, this survey also proposes ideas for future research methods to show directions of the future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chang-Jian Sun ◽  
Fang Gao

The marine predators algorithm (MPA) is a novel population-based optimization method that has been widely used in real-world optimization applications. However, MPA can easily fall into a local optimum because of the lack of population diversity in the late stage of optimization. To overcome this shortcoming, this paper proposes an MPA variant with a hybrid estimation distribution algorithm (EDA) and a Gaussian random walk strategy, namely, HEGMPA. The initial population is constructed using cubic mapping to enhance the diversity of individuals in the population. Then, EDA is adapted into MPA to modify the evolutionary direction using the population distribution information, thus improving the convergence performance of the algorithm. In addition, a Gaussian random walk strategy with medium solution is used to help the algorithm get rid of stagnation. The proposed algorithm is verified by simulation using the CEC2014 test suite. Simulation results show that the performance of HEGMPA is more competitive than other comparative algorithms, with significant improvements in terms of convergence accuracy and convergence speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Maobin Ding

Study on designing reasonable travel routes with the least time cost and the highest experience index was conducted. An artificial intelligence-based wireless sensor travel route planning study is proposed. First, the improved TSP route planning model is built at the least time consumption and combines the normal distributed random number (ND) with the genetic algorithm (GA) and proposes the ND-GA algorithm, analyzes the overall structure, node structure, communication mode, and network coverage of the wireless sensor network, and gives a mathematical model of wireless transmission energy consumption. Using the proposed algorithm to solve the travel route and detailed itinerary, with time, the 10-year travel route design model based on multitarget dynamic optimization finally detailed analysis of the model results and sensitivity analysis results showing that the application of AI wireless sensor technology can also make the scenic work more efficient; for example, a face recognition system can improve the speed of ticket checking. Although the application of AI technology is widely used in tourism activities, there are some problems, which require the continuous optimization and innovation of AI wireless sensor technology by relevant practitioners, so that it can better serve tourists.


Sign in / Sign up

Export Citation Format

Share Document