scholarly journals Generalized simultaneous component analysis of binary and quantitative data

2020 ◽  
Author(s):  
Yipeng Song ◽  
Johan A. Westerhuis ◽  
Nanne Aben ◽  
Lodewyk F. A. Wessels ◽  
Patrick J. F. Groenen ◽  
...  

2020 ◽  
Author(s):  
Yipeng Song ◽  
Johan A. Westerhuis ◽  
Nanne Aben ◽  
Lodewyk F. A. Wessels ◽  
Patrick J. F. Groenen ◽  
...  


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhengguo Gu ◽  
Niek C. de Schipper ◽  
Katrijn Van Deun

AbstractInterdisciplinary research often involves analyzing data obtained from different data sources with respect to the same subjects, objects, or experimental units. For example, global positioning systems (GPS) data have been coupled with travel diary data, resulting in a better understanding of traveling behavior. The GPS data and the travel diary data are very different in nature, and, to analyze the two types of data jointly, one often uses data integration techniques, such as the regularized simultaneous component analysis (regularized SCA) method. Regularized SCA is an extension of the (sparse) principle component analysis model to the cases where at least two data blocks are jointly analyzed, which - in order to reveal the joint and unique sources of variation - heavily relies on proper selection of the set of variables (i.e., component loadings) in the components. Regularized SCA requires a proper variable selection method to either identify the optimal values for tuning parameters or stably select variables. By means of two simulation studies with various noise and sparseness levels in simulated data, we compare six variable selection methods, which are cross-validation (CV) with the “one-standard-error” rule, repeated double CV (rdCV), BIC, Bolasso with CV, stability selection, and index of sparseness (IS) - a lesser known (compared to the first five methods) but computationally efficient method. Results show that IS is the best-performing variable selection method.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3842
Author(s):  
Alessandro D’Alessandro ◽  
Daniele Ballestrieri ◽  
Lorenzo Strani ◽  
Marina Cocchi ◽  
Caterina Durante

Basil is a plant known worldwide for its culinary and health attributes. It counts more than a hundred and fifty species and many more chemo-types due to its easy cross-breeds. Each species and each chemo-type have a typical aroma pattern and selecting the proper one is crucial for the food industry. Twelve basil varieties have been studied over three years (2018–2020), as have four different cuts. To characterize the aroma profile, nine typical basil flavour molecules have been selected using a gas chromatography–mass spectrometry coupled with an olfactometer (GC–MS/O). The concentrations of the nine selected molecules were measured by an ultra-fast CG e-nose and Principal Component Analysis (PCA) was applied to detect possible differences among the samples. The PCA results highlighted differences between harvesting years, mainly for 2018, whereas no observable clusters were found concerning varieties and cuts, probably due to the combined effects of the investigated factors. For this reason, the ANOVA Simultaneous Component Analysis (ASCA) methodology was applied on a balanced a posteriori designed dataset. All the considered factors and interactions were statistically significant (p < 0.05) in explaining differences between the basil aroma profiles, with more relevant effects of variety and year.





Sign in / Sign up

Export Citation Format

Share Document